Technical Systems Audits (TSA): Feel the Love

Leena Khangura

Quality Assurance Section

2019 PQAO Training, Davis, CA

Overview

What is a TSA and Its Purpose?

What to Expect

Common Findings

What Is a TSA and Its Purpose?

What Is a TSA?

40 CFR Part 58, Appendix A Section 2.5 states:

2.5 Technical Systems Audit Program. Technical systems audits of each PQAO shall be conducted at least every <u>3 years</u> by the appropriate EPA Regional Office and reported to the AQS. If a PQAO is made up of more than one monitoring organization, all monitoring organizations in the PQAO should be audited within 6 years (two TSA cycles of the PQAO). As an example, if a state has five local monitoring organizations that are consolidated under one PQAO, all five local monitoring organizations should receive a technical systems audit within a <u>6-year</u> period. Systems audit programs are described in reference 10 of this appendix.

"Reference 10" is..

Consolidated PQAO with 3 Monitoring Agencies

Must be audited every 3 years (EPA)

Must be audited every 6 years (CARB) "Reference 10" is..

The U.S. EPA Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II

Otherwise known as: "The QA Handbook"

What Does It Say?

Section 15.3 Technical Systems Audit

 "A technical systems audit is an on-site review and inspection of a monitoring organization's ambient air monitoring program to assess its compliance with established regulations governing the collection, analysis, validation, and reporting of ambient air quality data."

Six Key Areas Addressed in a TSA

1) Planning 2) Field Operations 3) Laboratory Operations 4) Quality Assurance/Quality Control 5) Data Management 6) Reporting

Planning

- Network Design
- Monitoring Strategy and Representativeness
- Meeting Monitoring Requirements
- Resources (Staffing and Equipment)

Field Operations

- Use of approved analyzers and samplers for monitoring objective (FRM,FEM) and operating according to FRM/FEM requirements
- Following documented sampling procedures
- Proper siting of monitoring stations, sampler and probes
- Maintenance
- Site safety concerns

Laboratory Operations

- Review documentation/logbooks
- Use of appropriate analytical equipment
- Following documented analytical procedures
- Maintenance capabilities
- Sample handling and storage

Quality Assurance and Quality Control

- Approved and updated QMP and QAPP
- Independence
- QC checks (zero/precision/span checks, calibrations)
- Conducted according to SOPs
- QC checks conducted at the correct frequency
- Documented QA data reviews
- Audits/AQDAs/CANs

Data Management

- Data acquisition system
- Data backup
- Data flow SOP or flowchart
- Documentation
- Review AMP reports
- Archival protocol (paper and electronic)

Reporting

- Data in AQS
- Timely reporting
- Correct flagging
- Correct null coding
- Metadata
- Certification

What to Expect?

What to Expect

- Pre-Audit Activities
- On-Site Assessment & Interviews
- Post-Site Assessment Activities

Pre-Audit Activities

Agency's TSA Questionnaire Response

Agency's Quality

Documents

Review Data Package

Review Data!!

- Pull the agency's data from AQS
 - AMP 350 (Raw Data Report)
 - AMP 251 (QA Raw Data Assessment Report)
 - AMP 256 (QA Data Quality Indicator Report)
 - AMP 430 (Data Completeness Report)
 - AMP 480 (Design Value Report)
 - AMP 503 (Extract Sample Blank Data)
 - AMP 504 (Extract QA Data)
 - AMP 600 (Certification Evaluation & Con

AMP 350 Report

Code change?

What malfunctioned? Where is maintenance & recalibration?

BOUR														-												
DAY	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1000	190	2000	2100	2200	2300	OBS	MAXIMUN
1	5.5	1.8	3.2	2.9	3.2	2.1	2.3	3.4	7.1	5.6	2.9	2.7	2.1	3.2	5.7	8.1	11.0	2.1	1.7	2.3	2.2	1.8	2.4	3.0	24	11.0
2	4.7	4.1	4.1	5.5	5.2	2.6	1.3	2.0	2.9	2.2	1.9	1.0	.9	.7	.7	.7	.8	.6		.6	.5	. 6	. 8	1.0	24	5.5
з	1.5	.9	.7	.7	. 6	. 6		1.0	1.0	.7	.7	1.3	1.1	1.5	2.9	.9	.5	.5	.5	.4	.5	.5	.4	.5	24	1.9
4	1.5	.7	.5	.4	. 4	.4	.4	.4	.8	2.5	3.6	4.9	A 6	1.5	.9	.8	.7	.7	.7	.8	.5	.4	. 5	.4	24	8.6
5	2.6	1.0	.7	.6	. 6	.6	.7	.7	.9	1.1	1.9	2.7	BF	AN .	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	12	2.7
6	AN	AN	AN	AN	MA	AN	AN	AN	A	AN	AN	AN			AN	AN	AN	BL	AN	AN	AN	AN	AN	AN	0	
7	AN	AN	AN	AN	AN	AN	AN	AN	AN	BA	BA	BA	AN	BC	BC	BT	AN	AN	AN	AN	AN	AN	AN	AN	0	
8	AN	AN	2.11	AN	AN	AN	AN	AN	AN	AN	BA	BC	BC	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	0	
9	AN	AN	AN	AN	AN	AN	AN	AN	AN	AS	AS	AS	AS	AS	-	AS	AS	AS .	AS	AS	AS	AS	AS	AS	٥	
10	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	0	
11	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	.s	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	0	
12	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	AS	D	
13	à.s	дs	AS	AS	AS	AS	AS	AS	AS	AY	AS	AY	YA,	1.0	.7	.3	.2	. 1	.4	.3	. 2	.3	5	.4	11	1.0
14	4.3	1.6	1.0	1.2	1.5	1.3	1.3	1.2	1.4	1.9	2.3	2.4	2.1	2.4	2.0	1.8	1.6	1.4	1.5	2.4	4.3	3.5	2.3	1.4	24	4.3
15	4.4	1.7	1.5	1.2	1,2	.5	.5	.6	2.3	4.3	4.4	4.7	8.5	13.2	12.9	10.1	8.1	8.3	5.7	2.1	.8	.5	-4	.4	24	13.2
16	4.6	1.4	.7	.5	.5	.4	- 6	.5	.4	1.0	4.9	8.5	8.8	6.2	5.3	4.9	17.6	21,7	6.7	2.6	1.6	1.7	2.0	2.2	24	21.7
17	4.0	1.5	.9	.8	. 8	.7	.6	.5	.5	2.8	4.7	4.1	3.7	3.3	3.1	2.8	2.4	1.9	1.5	1.4	1,2	.1.1	1.1	1.0	24	4.7
18	3.6	1.9	1.5	1.1	. 6	.9	.9	.9	.8	2.1	3.9	5.3	12.9	8.9	6.7	5.7	6.5	5.5	3.1	1.8	1.1	.5	.4	.3	24	12.9
19	3.7	1.1	.7	.7	.7	.6	. 6	.5	.7	1.8	3.4	7.0	BF	10.0	6.7 .	4.0	3.3	3.0	2.9	2.8	2.3	2.1	1.7	1.6	23	10.0
20	3.8	2.5	1.8	1.6	1.7	1.0	.7	.6	1.2	3.0	3.7	6.5	9.2	8.7	7.3	8.0	6.1	5.0	5.4	6,0	5.8	4.9	4.5	3.1	24	9.2
21	3.8	1.9	1.6	.9	-8	1.3	1.0	.9	1.4	1.6	2.4	4.7	7.8	10.7	6.6	5.1	4.2	2.5	1.9	1.7	1.2	.7	.5	.5	24	10.7
22	3.1	1.2	.8	.7	8.	. 4	.5	.5	-7	ð.	1.0	7.4	28.6	18.1	9.2	4.3	2.5	1.5	1.3	1,3	1,5	3.2	4.0	2.9	24	28.6
23	4.1	4.7	12.5	13.1	8.0	2.5	2.0	1.0			+4	.1	-4	.1		.9	.1	.0	.0	.0	.0		.1	.0	24	13.1
24	1.5	e.		.1	.0	.0	.2	.1	.3	- 0 	-4		.4	.1	.1	-1	-0	,0	.0	.0	.0	.0	.0	.0	24	1.5
40	3.2	1.3	1.1	4.3	3.2	3.2	3.0	3.9	5.0	3.5	3.5	10.4	0.3	4.4	9.3	9.9	4.9	2.8	2.6	1.8	1.9	1.4	.9	.8	24	10.4
20	2.4	1.0	.0	- 3			. 3		.0	4.9	2.2	4.1	4.7	3.3	2.1	4.7	2.1	2.8	4.0	5.5	1.9	1.2	1.4	2.2	24	5.5
28	4.0	1.2	. /			.1	. 2	. 4		0.4	3.6	4.5	43.3	3.4	3.4			.1	.2	-0	.0	.0	. 0	. 0	24	13.3
29	3.3	1.4	. 7	- 0		.0			1.4		2.1	23.0	0.7	3.0	23.7	1.7	2.1	4.0	4.1		.4	1.4	.3	. 2	24	8.2
30	7.9	4.0	2.8	2.5	2.4	2.2	23	3.6	6.4	5.3	4.6	3.6	2.6	2 4	2 4	4 4	20.0	2 3	1.1	1.0	4.1	1.4	1.9	4.3 A	24	47.1
		1.0		0.0	a.1	a - a		2.0	0.13	3.3		2.0	0.0	n.1		4.4	1.4	4.3	4.4	A.0	. 2			.4	29	1.3

On-site Assessment & Interviews

Office Tour

- Entrance briefing
- Take the office tour!
 - File Room
 - Repair shop
 - Certification/ QA shop
 - Warehouse
 - Laboratory

Field Site Visit

- Housekeeping
- Review logbooks
- QA/QC docs
- Talk to the field tech
 - Demonstrate procedures?
- Check sample lines
 - Proper plumbing?
 - Condensation free?
 - Approved materials?
- Evaluate Appendix E

Pre-Audit Findings

Post-Site Assessment Activities

Common Findings And How to Avoid Them

Documentation

- Missing and/or outdated documentation
 - Quality management Plan (QMP) –Update every 5 years
 - Quality Management Project Plan (QAPP) Update every 5 years
 - Gaseous pollutants and particulate matter
 - Standard Operating Procedure (SOP) Update every 3 years
 - All field and lab operations
 - Data management
 - Training plans
 - Corrective action process

How to Avoid a Documentation Finding

Adopt CARB QA/QC Documents!

- Create an addendum that is specific to the District
- Submit to CARB for review and approval

No need to reinvent the wheel; use CARB docs!

Logbooks

- Calibration information is not documented
- Information regarding instrument quality control checks and maintenance are not documented
- Entries in logbooks are incomplete:
 - who was present at the site
 - Serial numbers of problematic instruments
 - Descriptions of actions taken
 - How much data could be impacted

Logbooks, continued

- Records of any instrument calibrations or checks performed, specifically the results, and where to find any related reports or check sheets.
- Dates that instrumentation were repaired or changed out and serial numbers of replacement instruments.
- Station repairs should be noted in chronological order in a central logbook at the time they are performed.

Data Management

Need a multilevel review process

- Operator, peer and management review required
- Formally documented in SOP
- Correct codes used
 - Consistency between all operators

Summary

- TSA is a 3-Step Process
 - Pre-audit Questionnaire
 - On site visit (3-5 days)
 - Follow up/Final report (5-6 months)
 - Major Findings
 - Documentations (SOPs, QMP, QAPP)
 - Logbooks
 - Calibration information
 - QC/QA control checks and results
 - Instrument repairs and downtime
 - Data Management Process and SOP

Thank You – Questions?

916.323.1439

Harleen.Khangura@arb.ca.gov