Toxic Ambient Air Monitoring Programs

Field »Lab »SNAPS »Data

June 6, 2019

Dustin Goto Ali Adams Yunliang Zhao **Monitoring and Laboratory Division**

Toxics Overview

- History and Network
- Field Overview
- Laboratory Overview
- Study of Neighborhood Air near Petroleum Sources (SNAPS)

California Air Toxics Monitoring Program

- Establishes the process for the identification and control of toxic air contaminants;
 - Toxic Air Contaminant Identification and Control Act (AB 1807, 1983) created California's program to reduce exposure to air toxics.
 - In 1985, CARB established a twenty station toxic monitoring network within major urban areas.
 - Hazardous Air Pollutants List.

California Air Toxics Monitoring Program

Year

California Air Toxics Monitoring Program

1,3-Butadiene

📥 90th Percentile
🔶 Mean
- Detection Limit

TOXICS

	901 C (1 in 12 :	anister sampling)	92 (1 in	4 Samp 12 samp	ler oling)	SASS Sampler (1 in 6 sampling)							
Site	GHG	VOC	Carbonyls	Metals (ICP-MS)	Cr+6	PM 2.5 Mass	lons	Woodsmoke	Metals (XRF)				
Azusa	x	x	x	x	X								
Bakersfield	x*	х*	x*	x*	x*								
Calexico	x	x	x	x	x	х	x	x	х				
Chico	x	x	х	x	x	х	x	x	х				
Chula Vista	x	x	x	x	x								
El Cajon	x x x x		x										
Fresno	x x x x x		x										
Los Angeles	x	х	x	x	x								
Modesto						х	x	x	х				
Portola						х	x	x	х				
Roseville	x	x	x	x	x								
Rubidoux	x	x	x	x	x								
Sac T						х	x	x	x				
San Francisco	x x x x		x										
San Jose	x x x x		x										
Simi Valley	x x x x		x										
Stockton	x x x* x* x*				x*								
Visalia						х	x	x	х				

* collocated

Analyte	ICP-MS	XRF
Aluminum, Al		х
Antimony, Sb	x	х
Arsenic, As	x	х
Barium, Ba		х
Beryllium, Be	x	
Bromine, Br		x
Cadmium, Cd	x	
Calcium, Ca		x
Chlorine, Cl		х
Chromium, Cr	x	х
Cobalt, Co	x	х
Copper, Cu	x	х
Iron, Fe	x	x
Lead, Pb	x	x
Manganese, Mn	x	х
Mercury, Hg		x
Molybdenum, Mo	х	х
Nickel, Ni	x	х
Phosphorus, P		х
Potassium, K		х
Rubiduim, Rb		х
Selenium, Se	x	х
Silicon, Si		x
Strontium, Sr	x	x
Sulfur, S		x
Tin, Sn	x	x
Titanium, Ti	x	х
Vanadium, V	x	x
Yttrium, Y		x
Zinc, Zn	x	x
Zirconium, Zr	x	

	VOC by GCMS
	Analyte
1,1,1-Trichlo	roethane (TCEA)
1,3-Butadien	e
Acetone	
Acetonitrile	
Acrolein	
Acrylonitrile	
Benzene	
Bromometha	ane (Methyl Bromide)
Carbon Disul	fide
Carbon Tetra	chloride
Chloroform	
Cis-1,3-dichl	propropene
Dichloromet	hane (DCM)
Ethylbenzen	2
Meta + para	Xylene (m/p-xylene)
MTBE	
o-Dichlorobe	nzene
Ortho Xylene	e (o-xylene)
p-Dichlorobe	nzene
Perchloroeth	ylene (PERC)
Styrene	
Toluene	
Trans-1,3-dio	hloropropene

Carbonyls
Formaldehyde
Acetaldehyde
MEK

iADAM Toxics Database

https://www.arb.ca.gov/adam/toxics/toxics.html

		January						February						March			Ĕ.			A	pri	1								
S	M	Т	W	Т	F	S		S	M	Т	W	Т	F	S		S	M	Т	W	Т	F	S		s	M	Т	W	Т	F	S
		1	2	3	4	5							1	2							1	2			1	2	3	4	5	6
6	7	8	9	10	11	12		3	4	5	6	7	8	9		3	4	5	6	7	8	9	1	7	8	9	10	11	12	13
13	14	15	16	17	18	19	1	.0	11	12	13	14	15	16		10	11	12	13	14	15	16		14	15	16	17	18	19	20
20	21	22	23	24	25	26	1	.7	18	19	20	21	22	23		17	18	19	20	21	22	23		21	22	23	24	25	26	27
27	28	29	30	31			2	4	25	26	27	28			1	24	25	26	27	28	29	30		28	29	30				
																31														
		I	May	7						J	un	е						J	uly	,						Aı	ıgu	st		
S	M	Т	W	Т	F	S		s	M	Т	W	Т	F	S		s	M	Т	W	Т	F	S		S	M	Т	W	Т	F	s
			1	2	3	4	3.6							1			1	2	3	4	5	6						1	2	3
5	6	7	8	9	10	11		2	3	4	5	6	7	8		7	8	9	10	11	12	13		4	5	6	7	8	9	10
12	13	14	15	16	17	18		Э	10	11	12	13	14	15		14	15	16	17	18	19	20		11	12	13	14	15	16	17
19	20	21	22	23	24	25	1	.6	17	18	19	20	21	22		21	22	23	24	25	26	27		18	19	20	21	22	23	24
26	27	28	29	30	31		2	3	24	25	26	27	28	29	:	28	29	30	31					25	26	27	28	29	30	31
							3	0															1.1							
	S	ept	tem	be	г					0c	tob	er					N	lov	em	ber	г				I)ec	em	bei	r	
S	$\mathbb{N} \mathbb{I}$	Т	W	Т	F	S		S	M	Т	W	Т	F	S		S	M	Т	W	Т	E	S		S	IVI	Т	W	Т	F	S
1	2	3	4	5	6	7				1	2	3	4	5							1	2		1	2	3	4	5	6	7
8	9	10	11	12	13	14		6	7	8	9	10	11	12		3	4	5	6	7	8	9		8	9	10	11	12	13	14
15	16	17	18	19	20	21	1	.3	14	15	16	17	18	19		10	11	12	13	14	15	16	13	15	16	17	18	19	20	21
22	23	24	25	26	27	28	2	0	21	22	23	24	25	26		17	18	19	20	21	22	23	1	22	23	24	25	26	27	28
29	30						2	7	28	29	30	31				24	25	26	27	28	29	30		29	30	31				
29	30						2	7	28	29	30	31				24	25	26	27	28	29	30		29	30	31				

Notes

3-Day schedule is shown in orange, green, and purple 6-Day schedule is shown in green and purple 12-Day schedule is shown in purple

Toxics Field Overview - Samplers

• Xonteck 924

Model 924

• Xonteck 901/910PC

Model 910

Field Sample Handling

AMBIENT AIR MONITORING

MLD operates 41 sites including 6 seasonal and supports 229 district sites

Toxics Lab Overview

Combined Laboratory Functions

- 15 Total Programs Combined, plus Special Studies
- Provide Analytical Chemistry Services to meet Federal/State Regulations and Client Expectations
- Data Quality Assurance/Quality Control
- Timely Data Reporting

TACs Ambient Air Analysis

- Total Metals by Inductively Coupled Plasma/Mass Spectrometry (ICP/MS)
 - Method 61
- Hexavalent Chromium (Cr⁶⁺) by Ion Chromatography (IC)
 - Method 39
- Metals Analysis by X-Ray Fluorescence Spectroscopy (XRF)
 Method 34

TACs Continued...

- Volatile Organic Compounds (VOCs) by Gas Chromatography-Mass Spectrometry (GC-MS)
 - Method 58, 66, and 72
- Carbonyl Compounds by High Performance Liquid Chromatography (HPLC)
 - Method 22
- Pesticides by Gas Chromatography-Triple Quadrupole Mass Spectrometry
 - Method 77

Media Preparation, Shipping and LIMS

• Filters

- Inspect for tears, holes, imperfections
- Acid wash, impregnation

Canisters

- Rigorous Cleaning Cycles
- Prepare field spikes, if required
- Package and Ship
 - Ship out, sampled, ship back

• Laboratory Information Management System (LIMS)

Total Metals by ICP/MS

- 16 sites with 1-in-12 Collection Frequency
- 37 mm Teflon Filters
- Extracted in Dilute Acid
- Extract Analyzed by Inductively Coupled Plasma – Mass Spectrometry
- 19 Elements Analyzed

Hexavalent Chromium (Cr⁶⁺) by IC

- 16 sites with 1-in-12 Collection Frequency
- 37 mm Cellulose Filters
- Extracted in Deionized Water
- Extract analyzed by Ion Chromatography

Metals Analysis by XRF

- 6 sites with 1-in-6 Collection Frequency
- 47 mm Teflon Filters
- Non-Destructive of the Sample
- Analyzed by X-Ray Fluorescence Spectroscopy
- 28 Elements Analyzed

Volatile Organic Compounds (VOCs) by GC-MS

- 16 sites with 1-in-12 Collection Frequency
- Canisters for Whole Air Sampling
- Canister Cleaning Process for Re-use
- Analyzed by Gas Chromatography-Mass Spectrometry
- 24+ Compounds Analyzed

Carbonyl Compounds by HPLC

- 16 sites with 1-in-12 Collection Frequency
- DNPH Coated Silica Cartridge
- Extracted with Acetonitrile
- Analyzed by High Performance Liquid Chromatography
- 3 Compounds Analyzed
 - (Formaldehyde, Acetaldehyde, MEK)

Pesticides by GC-MS/MS

- 10-12 Week Studies at Public Sites per DPR
- 8 Network Sites on a 1-in-6 Frequency
- Canisters and Resin/Carbon Tubes
- Extracted with Ethyl Acetate
- Analyzed by Gas
 Chromatography Triple Quad
 Mass Spectrometry

Sample Analysis

- Prepare Standards
- Method Detection Limits and

Linearity Studies

- Blanks and Laboratory Spikes
- Analyses (Specific Analytical Sequence)

Quality Control (QC)

- Holding times
- Blanks (Field Blanks, Water Blanks, Filter Blanks)
- Check standards within <u>+</u> 20% of initial calibration standard
- Beginning and closing control standards within established limits
- Replicate analyses
- Field (Matrix) spikes

Advanced Monitoring Techniques -										
Chemical Composition										
VOCs	VOCsSVOCsParticles									
BTEX, Pesticides	PAHs, Pesticides	Organic Water soluble Metal								

Lab-grade auto gas chromatograph

Portable auto gas chromatograph

Study of Neighborhood Air Near Petroleum Sources (SNAPS)

Motivations

Aliso Canyon underground natural gas storage leak

Exposure concerns raised by communities

Part of broader CARB effort to understand impacts of oil and gas operations

Program Goals

Characterize air quality at the community level

Analyze data for **possible health risks**

Identify emission sources as feasible

Target Analytes and Monitoring Techniques Major Pollutants

Criteria Pollutants (PM2.5, Ozone, Carbon Monoxide)

Volatile Organic Compounds (VOCs) (e.g. BTEX, Aldehydes, Glycols)

Polycyclic Aromatic Hydrocarbons (PAHs)

Target Analytes and Monitoring Techniques

Criteria Pollutants (PM2.5, Ozone, Carbon Monoxide)

Methane

Discrete Samples Continuous Measurements Sampling 1-in-6 Hourly or less Health risk assessment Health risk assessment Application & Source attribution

Monitoring Techniques – Mobile Monitoring

Study of Neighborhood Air Near Petroleum Sources (SNAPS)

Program Goals

Characterize air quality at the community level

Analyze data for **possible health risks**

Identify emission sources as feasible