Calibration versus Performance Evaluation Audits for Gaseous Instruments

PQAO Training 2019

Karl Tupper, San Luis Obispo APCD

Michael Hamdan, South Coast AQMD

Calibrations

Overview of Calibrations

- Calibration checks (and possibly corrects) an instrument's response against a standard of known accuracy
 - Typically, before using instrument to collect data
 - (Audit is QA function.)
- Who, When, How
- New criteria and requirements
- Tips and Tricks

Some Definitions

"Calibration" is defined as:

The comparison of a measurement standard, instrument, or item with a standard or instrument of higher accuracy to detect and quantify inaccuracies and to report or eliminate those inaccuracies by **adjustment**.

(U.S. EPA QA Handbook Vol II)

- "Verification": comparison done, but no adjustment made "AS IS"
- Today, focus on gas instruments
 - concepts also apply to PM and meteorology

References

- 40 CFR 50 Appendices
- EPA Quality Assurance Manual Vol II (Jan 2017)
 - https://www3.epa.gov/ttn/amtic/qalist.html
- CARB QAPP for Gaseous Pollutants (Sept 2018)
 - https://ww2.arb.ca.gov/ourwork/programs/quality-assurance/qm-documentrepository/quality-management-plans-and-quality
- All Districts need to adopt CARB QAPP or updated their addenda by summer 2019!

How

- Calibrations should be carried out
 - at the field monitoring site
 - by allowing the analyzer to measure test samples of known pollutant concentrations
- Analyzer and calibrator should be warmed up
 - T400 ozone: ≥1 hour (CARB SOP)
 - T200 NO₂: ≥1 hour, longer better (CARB SOP)
 - Trace CO: 10 hours (recommendation)
 - T700 Calibrator: ≥1 hour (CARB SOP)

How (continued)

- During the calibration the analyzer should be operating in its normal sampling mode, including:
 - Filters / scrubbers /conditioners
 - Through as much of the ambient air inlet system as is practicable. → Ideally, through the probe.
- Keep this in mind when:
 - Designing new station
 - Purchasing calibration equipment

When

Upon:

- Installation
- Relocation
- Repairs or Service
- Interruption
- Upon any indication of potential malfunction
- At least every 6 or 12 months (see below)
- Station shutdown

Minimum frequency of calibration:

- CARB: At least every six months
- EPA: Can be annually w/ daily zero/span checks

If possible, avoid calibrating during:

- High pollution episodes
- Adverse weather

Keep track of when calibrations are happening!

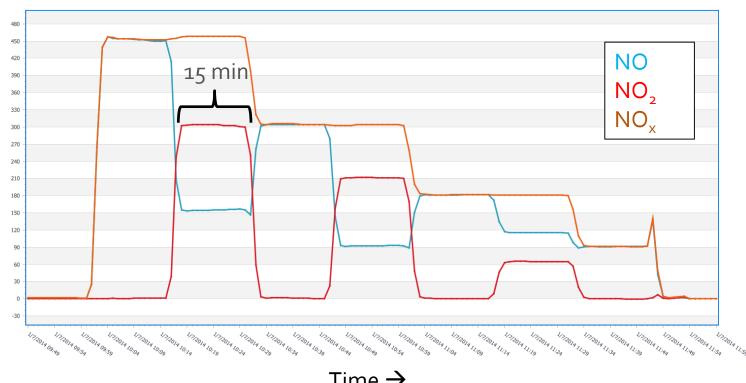
How Many Points?

EPA/CARB requirements

- Ozone, SO₂, Carbon Monoxide:
 - Zero
 - 4 upscale points
- · NO, NO₂, NO_X:
 - Zero
 - 4 upscale points for NO & NO_x
 - 3 NO₂ titration points

Standards

- Must be certified and traceable
 - U.S. EPA QA Vol II, Section 12.1.2
 - CARB Standards Lab:
 - http://www.arb.ca.gov/aaqm/qa/stdslab/stdslab.htm
- Check expiration dates
 - Calibration gas tanks
 - Mass flow controllers
 - Ozone transfer standard (6 months for Level 3/4)
 - Flow standards (1 year)
- Properly warm-up/equilibrate:
 - Flow standards
 - Ozone transfer standard



Zero Air

- Zero Air Generator (ZAG) is part of calibration system
- Per CARB QAPP, we should:
 - Verify annually that our zero air is clean
 - Document ZAG maintenance
- See EPA QA Manual Appendix K

Response Plateauing

- General practice is to allow concentrations to stabilize (plateau) for at least 10-15 minutes
- Teledyne API Analyzers: Stability should be <0.5 ppb (non-trace level)

Documentation

- Usual stuff: name, date, initials/signature
- Information for standard(s):
 - Serial number(s)
 - Calibration/certification date(s)
 - Concentrations, correction factors, etc.
- Information for instrument:
 - Serial number
 - As-Is and Final slope/intercept
- Calibration info:
 - Calibration points
 - Instrument response

Calibration Acceptance Criteria

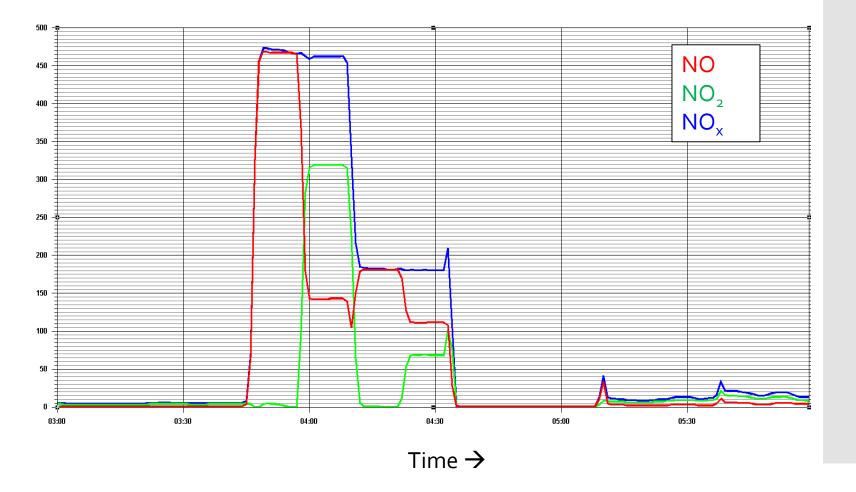
Old CARB criteria:

- Ozone: ± 2% or 3 ppb "Overall % Accuracy"
- NO₂: ± 5% "Overall % Accuracy"
- SO_2 and CO: slope of 0.95 to 1.05

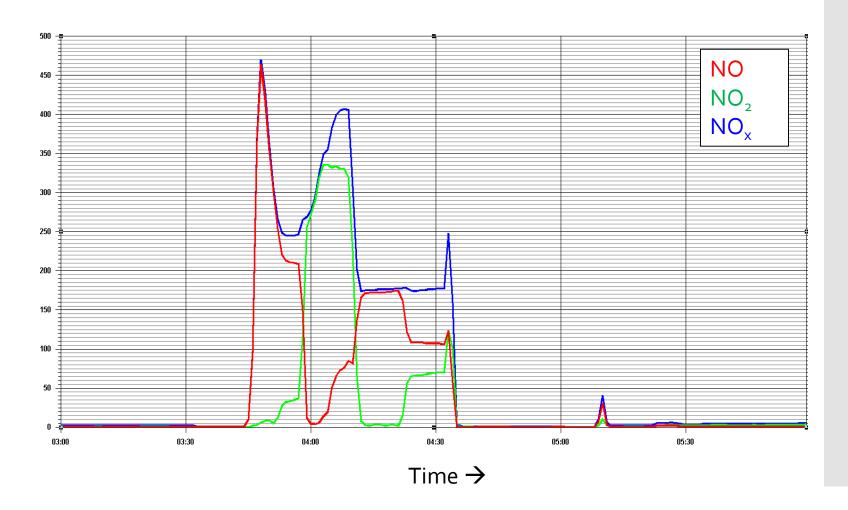
New Criteria:

- **EPA** Guidance* says:
 - All points within 2.1% or ≤ ±1.5 ppb (≤ ±0.030 ppm for CO) of best-fit straight line, whichever is greater
 - Slope is 1 ± 0.05 (recommendation only)
 - For NO₂: converter efficiency ≥ 96% (96% 104.1% recommended)
- CARB QAPP for Gaseous Pollutants (2018) says:
 - All points $< \pm 2.1\%$ or $\le \pm 1.5$ ppb ($\le \pm 0.030$ ppm for CO) of best-fit straight line, whichever is greater
 - Slope is 1 ± 0.05
 - For NO₂: converter efficiency 96% 104.1% for heated Mo converter
 - Or, more stringent criteria in specific SOP may be applied
- Check & update your SOPs and QAPPs!!

Additional EPA Guidance on Calibrations


EPA Memoranda & Tools on AMTIC website:

- https://www.epa.gov/amtic/policy-memoranda-and-technical-quidance
- "Technical Note- Alternative to Calibration Procedures Described in NO2, SO2 and CO Methods." (May 4, 2018.)
 - OK to use Calibration Scale rather than Full Scale
- "Technical Note- Clarifications and Guidance on Gaseous Pollutant Methods" (Jan 30, 2018.)
 - Clarifies "All points within 2.1% or ≤ ±1.5 ppb (≤ ±0.030 ppm for CO) of best-fit straight line, whichever is greater"
- DASC Tool (Excel workbook) for calculations
 - https://www3.epa.gov/ttn/amtic/qareport.html


Failed Calibration?

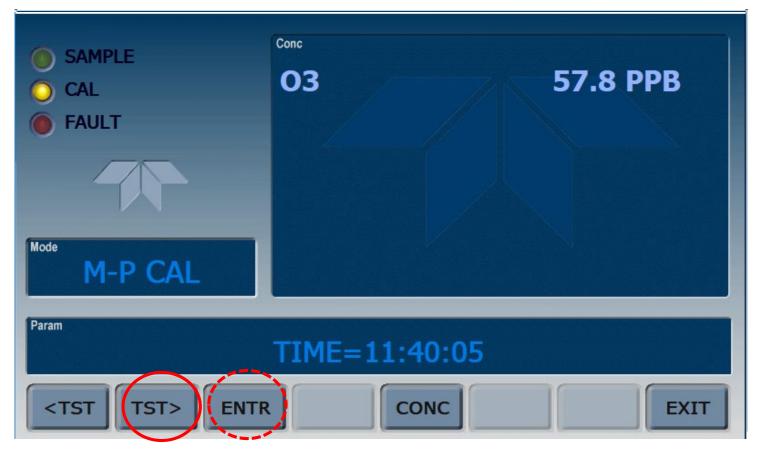
- Whatever happens: *Document, Document, Document!!*
- Double check calibration equipment, data logger, and calculations
- Corrective action:
 - Re-zero and/or re-span
 - Fix or replace instrument
 - Perform calibration/verification prior to placing monitor back online
- Inform upstream data users
- How might data be affected?
 - In general, if 1-pt QC check still passes, data invalidation not necessarily needed
 - Note: "post-processing" of data no longer accepted

Purging a Regulator Z/S/P with Properly Purged Reg

Purging a Regulator Autocal with Improperly Purged Reg

Calibration:
Purging a
Regulator
Demo

Misc.


- Instrument Display vs Data Acquisition
 System
 - Is the DAS calibrated?
- Dynamic Dilution Calibrators (NO, SO₂)
 - Regularly calibrate mass flow controllers (MFCs)
 - Calculate "TRUE" audit concentration from MFC calibration curve

Misc.

- Ozone Calibrators:
 - Apply current photometer certification to calculate "TRUE" concentrations
 - Provide adequate vent for excess flow
 - Teledyne 700/703 A/E/T specific:
 - Run Backpressure Compensation EVERY time there is change in the pneumatic configuration OR if PHOTO SPRESS / PH PRESS is not stable
 - See video by Teledyne-API: https://www.youtube.com/watch?v=SyBoaKtrvYo
 - Run Ozone Generator Cal whenever calibrator takes a while to find target concentrations

Finally...

Touch Screens:

SETUP > MORE > VARS > 929: manually fix slope and offset

Teledyne Service Note 10-021C: T-Series Touch Screen Calibration (2013)

Overview of Performance Evaluation Audits

- Why audit?
- Audit types
- How to prepare?
- How to select PE Audit levels and values?
- PE Audit Criteria and Summary Report
- Corrective Action Request (CAR)

Why do we audit?

- U.S. EPA requirement: 40 CFR Part 58 App. A Sec. 3.2.2
- Data integrity and defensibility.
- Independent review to agency quality control checks and procedures
- Consistency across multiple stations/instruments
- Identifies systematic issues and implements corrective actions (if needed)

What are the types of Audits?

Audit Type	Frequency	Done by
Performance Evaluation (PE) Program	Annually for gaseous instruments 25% per quarter Semi-annually for PM samplers 5-7 month separation	PQAO, Monitoring agency or outside contractors
National Performance Audit Program (NPAP) and PEP	20% of ambient air network annually Full coverage in 5 years	U.S. EPA contractors, U.S. EPA, or CARB in California
Technical Systems Audit (TSA)	Once every 3-5 years	U.S. EPA Regions (for California: Region 9)
Pb Audit Strip Program	Monthly	U.S. EPA contractor and agency lab

What is a Performance Evaluation Audit?

Today's focus: Through-the-Probe (TTP)
 Performance Evaluation (PE) audit for criteria (O₃, SO₂, CO, NO₂) gaseous instruments

• PE audit minimum requirement is 1/Year and 25% of the network every quarter.

 The audit and site response values are reported to AQS and assessed in the AQS reports.

How to prepare for the Performance Evaluation Audit?

• Ensure that audit standards are within certification (e.g., ozone standard and gas cylinders), audit equipment is warmed up and acclimated to the environmental conditions

- Contact station operator to schedule the audit and ensure access to site and equipment
 - Confirm that equipment is available for audit and not down for calibration or repair
- Acquire current information about the station instruments and monitors under audit (in case an instrument is added or shut down)

Tip: try to select audit points in the middle of the level measurement

Audit Points

• How many audit points?

Minimum 3 points but a 4th point is recommended

How to select audit points?

- Point 1: 2-3 times method detection limit*
- Point 2: less than or equal to 99th percentile of site data
- Point 3: primary NAAQS or highest 3-year concentration

Audit levels should be selected from the U.S. EPA expanded audit levels table below.

Audit	Concentration Range, ppm				
Level	\mathbf{O}_3	SO ₂	NO ₂	CO	
1	0.004-0.0059	0.0003-0.0029	0.0003-0.0029	0.020-0.059	
2	0.006-0.019	0.0030-0.0049	0.0030-0.0049	0.060-0.199	
3	0.020-0.039	0.0050-0.0079	0.0050-0.0079	0.200-0.899	
4	0.040-0.069	0.0080-0.0199	0.0080-0.0199	0.900-2.999	
5	0.070-0.089	0.0200-0.0499	0.0200-0.0499	3.000-7.999	
6	0.090-0.119	0.0500-0.0999	0.0500-0.0999	8.000-15.999	
7	0.120-0.139	0.1000-0.1499	0.1000-0.2999	16.000-30.999	
8	0.140-0.169	0.1500-0.2599	0.3000-0.4999	31.000-39.999	
9	0.170-0.189	0.2600-0.7999	0.5000-0.7999	40.000-49.999	
10	0.190-0.259	0.8000-1.000	0.8000-1.000	50.000-60.000	

Yellow highlight related to NAAQS Concentration

Tip: make sure that even if CObased audit is used, the value should be close to the calculated flow-based audit value

• Audit can be either CO-based or flow-based.

• **CO-based audit** is when the actual audit concentration for each point is calculated based on a response of an audit CO instrument that is calibrated pre- and post- audit to generate a slope and intercept and regression curve.

• *Flow-based audit* is when the actual audit concentration is calculated using the gas and air MFC flows.

CO-based vs Flow-based Audits

What to look out for when carrying a PE Audit?

- Adequate flow delivery and vent so the instruments are not pressurized.
- Use the flow mode on the dilution system to generate the audit points.

An Example of Generated Audit Target Values for Ozone

Audit Point #	Ozone (ppb)
1	105
2	60
3	30
4	12

Example of
Generated Audit
Target Values for CO,
SO2, NO, and NO2
Using a Cylinder with
1200 ppm CO, 9 ppm
SO2, and 30 ppm NO

CO (ppm)	SO ₂ (ppb)	NO (ppb)	NO ₂ (ppb)
8	60	199	105
4	30	100	60
2	15	50	30
1	7	25	12

PE Audit Criteria

Pollutant	Audit Levels 1 & 2	Audit Levels 3-10
CO	± 0.03 ppm	< ± 15 %
NOx and SO2	± 1.5 ppb	< ± 15 %
Ozone	± 1.5 ppb	< ± 10 %

PRELIMINARY SUMMARY AUDIT REPORT AUDIT AGENCY

Example PE Summary Audit Report

Site Name: Anaheim					Audit Date:	6/19/2018
Parameter	PE Lab Response (ppm)	Station Response (ppm)	Percent Difference	Absolute Difference (ppm)	Pass/Fail	Warning
Ozone						_
Ozone Audit level 5* Ozone Audit level 4*	0.1056 0.0615	0.1035 0.0600	-2.0 -2.4	-0.0021 -0.0015	Pass Pass	
Ozone Audit level 3* Ozone Audit level 2* Ozone Audit level 1*	0.0309 0.0125	0.0298 0.0117	-3.6 -6.4	-0.0011 -0.0008	Pass Pass N/A	
Carbon Monoxide						
CO Audit Point #1 CO Audit Point #2 CO Audit Point #3 CO Audit Point #4 CO Audit Point #5	8.108 4.071 2.143 0.824 0.824	7.870 3.980 2.080 0.820	-2.9 -2.2 -2.9 -0.5	-0.2380 -0.0910 -0.0630 -0.0040	Pass Pass Pass Pass N/A	
Oxides of Nitrogen						
NO Audit Point #1 NO Audit Point #2 NO Audit Point #3 NO Audit Point #4 NO Audit Point #5	0.1990 0.0999 0.0526 0.0202 0.0202	0.1915 0.0973 0.0510 0.0199 0.0199	-3.8 -2.6 -3.0 -1.5 -1.5	-0.0075 -0.0026 -0.0016 -0.0003 -0.0003	Pass Pass Pass Pass Pass	

Example PE Summary Audit Report NO2

NO2 Audit Point #1 NO2 Audit Point #2 NO2 Audit Point #3	0.1076 0.0634 0.0319	0.1030 0.0604 0.0302	-4.3 -4.7 -5.3	-0.0046 -0.0030 -0.0017	Pass Pass Pass
NO2 Audit Point #4	0.0120	0.0118	-2.1	-0.0003	Pass
Converter Efficiency NO2 Aud Converter Efficiency NO2 Aud Converter Efficiency NO2 Aud Converter Efficiency NO2 Aud	it Point #2 99.8% it Point #3 99.7%				Pass Pass Pass Pass
Sulfur Dioxide					
SO2 Audit Point #1	0.0585				N/A
SO2 Audit Point #2 SO2 Audit Point #3	0.0294 0.0155				N/A N/A
SO2 Audit Point #4	0.0059				N/A
SO2 Audit Point #5	0.0059				N/A

^{* =} CFR Appendix A Audit Levels

Corrective Action Request (CAR)

- CARs are issued, documented, and tracked by the SCAQMD QA Branch for:
- PE Audit results that are not within the audit acceptable criteria.
- Any potential quality assurance and safety findings.
- In addition, There will be a break-out session on corrective action processes tomorrow morning if you would like more information.

Example CAR

	David Sa	wyer		Date:	3/14/2019	_ A	ssessor:	Mike Hamdar	
Location:	Los Angele	os Angeles N. Main		s N. Main Assessment Date: 3/8/2019		3/8/2019	CAR #:		20190006
Expected Deadline: 3/29/		3/29/20	019 Instrument:		TL CO		S/N:	125	
	instrument.			ting data completenes			_		
RECOMM	ENDATIONS:			nstruments' internal pa	rameters and set u	up to	check if		
			y major discrepancies. both CO instrument at one site on the same manifold and let						
		both acclimate to the site conditions.							
		3. Calibrate both instruments using the same zero and CO concentration.							
				rformance over a peri	od of time on ambie	ent sa	ampling		
				pan results.		4:	_		
				acceptable put the ins strument if the issue c	•		n,		
		Торкаос	1110 111	or amone in the leader of	annot be received.				

Site Technical Systems Audit

- Siting criteria
- Material of probe, manifold, sample lines, connections
- Residence time calculation
- Station gas expiration date and pressure
- Calibration/maintenance records
- Annual ZAG maintenance and verification
- General station safety

Conclusion

- Calibrations and PE audits complement each other; both are distinct and required.
 - Calibrations occur routinely
 - PE audits are a snapshot in time, intended to have redundant checks
- The PE audit result alone does not invalidate the data; however, it may alert us of potential issues to investigate.
- There is a poster displaying key differences between a calibration and an audit.

Contact
Information:

Karl Tupper

A.Q. Specialist, San Luis Obispo County APCD

ktupper@co.slo.ca.us

phone: (805) 781-5912

Mike Hamdan

Sr. AQIS, South Coast AQMD

mhamdan@aqmd.gov

phone: (909) 396-2267