

Randy Lam

AQIS I (Station Operations)

South Coast Air Quality Management District

THE STATION OPERATOR

"What is your son doing for work these days?"

My dad: "He's a driver."

We drive

A lot

"HOW DO YOU FEEL ABOUT DRIVING?"

MY SAMPLE TRIANGLE

SCAQMD > LAX: 40 miles LAX > Santa Clarita: 37 miles Santa Clarita > SCAQMD: 60 miles Total: 137 miles on a sample collection day

So yeah, my dad isn't exactly wrong about what I do one day of week

BUT driving isn't the only thing we do!

THE STATION OPERATOR

What do you think a station operator does?

THE OPERATOR

- The South Coast Air Quality Management District divides the jobs of our Air Quality Instrument Specialists into three distinct categories
 - Operations
 - Repair
 - Calibrations
- Most other AQMD's have operators conduct basic operations as well as repairs
- Station Operators at the SCAQMD have multiple stations

AN OVERVIEW OF DUTIES

- 1. Monitor/Maintain gaseous instruments at stations <- Field
- 2. Collect samples from the field & submit to lab <- Field
- 3. Document irregularities with sampling/data <- Field
- 4. *Level 1 QC for data that eventually goes into AQS <- Office

*New for the SCAQMD!

ROUTINE OFFICE PROCEDURES: DAILY CHECKS

At the office:

- Review previous 24-hr data (minute and hourly), looking for:
 - Missing data (power failures, communications failures, etc.)
 - Flags /errors (equipment malfunctions)
 - High / low values (real or not)
 - Extreme values (e.g. over range values, negative values)
 - Unusual changes in values
 - Autocal results

Daily Precision Checks (% out) for: 2019/03/07

Data displayed is the most recent of last 24 hours.

DAILY PC ACROSS THE SOUTH COAST

- What's going on here?
- This is generally where the operator starts his/her day
- If you were an operator, what do you do?

I 03	I NO	NO2	NOx	NOy	со	CO_TL	S02	
Warning: (5%)) (10%)	(10%)	(10%)	(7%)	(7%)	(7%)	(7%)	
Invalid: (7%)) (15%)	(15%)	(15%)	(10%)	(10%)	(10%)	(10%)	
===== ========	= ========	=======	========	==========	=========	=======	===========	
60NR	-4.96	-5.55	-3.00					
AHNR	-5.37	-1.19	-4.67		1.19			
ANAH 1.12	-3.98	0.29	-3.57		3.14			
AZUS -4.24	1.43	5.34	2.78		1.92			
BNAP -8.36	-6.24	-5.32	-3.84					
CELA -3.03	1.82	-0.33	2.00	-0.72	1.82	-2.64	-5.56	
CMPT 0.56	-15.47	-12.62	-15.62		3.55			
CRES 2.18		I	I I					
ELSI -0.56	-7.85	1.18	-6.23		-3.96			
FONT -3.80	-9.96	-7.29	-8.22		3.85		-0.49	
GLEN -2.69	-0.15	-2.10	-0.24		4.06			
HDSN 0.80	-12.46	-7.84	-12.26		-0.95		-7.60	
HNTP	-5.67	-0.24	-4.38					
INDI -1.17	1	l	I					
LAHB -1.76	-11.73	-7.91	-11.48		2.70			
LAXH -1.06	****	****	****		****		0.60	
LBSH	-6.22	-6.51	-7.48					
MLVB -1.06	-4.24	-2.37	-2.43		-1.50			
MSVJ -4.81	1	l	I I		3.93			
ONNR	-24.33	-22.05	-23.87		-4.55			
PASA -3.49	-3.80	0.31	-3.10		4.22			
PERI 2.29		l	I I					
PICO -2.22	-5.53	-3.24	-4.33		-0.72			
PLSP -3.41	0.63	0.27	1.54		-0.47			
POMA -3.25	-4.54	5.32	-2.23		0.35			
RDLD -0.61		I	I I					
RESE -0.55	-6.48	-6.51	-8.04		0.69			
RIVR -2.13	-9.97	7.19	-6.98	-1.64	-0.75	1.73	-1.58	
SCLR -0.42	-4.04	-1.56	-3.33		3.57			
SLMZ								
SNBO -1.68	-4.21	2.26	-4.20		-2.03			
TMCA -5.13	I.	I	I I					
TRMZ	1	I	I I					1
UPLA -2.24	-1.02	4.73	1.34		1.17			
W710	-8.44	-7.49	-8.32					
WMAP	-1.24	2.91	-0.82					
WSLA 0.37	-8.97	-3.91	-7.42		0.68			

Daily Precision Checks (% out) for: WSLA 2019/04

INSTRUMENT HEALTH

We use these snapshots to keep an eye on instrument health and data validity

		CO	NO	NO2	NOx	03	
d.	Warni	ing: (7%)	(10%)	(10%)	(10%)	(5%)	
	Inval	lid: (10%)	(15%)	(15%)	(15%)	(7%)	
_	=====	=======	=======	=======	======	======	===
	01	1.96	-8.35	-5.80	-7.87	1.16	
	02	1.24	-9.03	-4.45	-8.21	0.30	
	03	1.20	-9.96	-6.08	-9.21	1.37	
	04	1.36	-10.51	-7.16	-9.74	0.88	
	05	1.81	-9.13	-5.15	-8.70	0.15	
	06	0.93	-9.84	-5.95	-9.78	0.01	
	07	1.24	-10.79	-8.43	-10.02	0.40	
	08	1.32	-9.98	-7.22	-9.72	-0.67	
	09	1.14	-9.71	-5.52	-9.11	-1.26	
	10	1.95	-10.77	-7.15	-10.16	0.10	
	11	2.60	-10.57	-5.43	-9.77	1.28	
	12	1.97	-9.12	-5.14	-8.18	0.10	
	13	1.40	-9.95	-2.73	-9.04	0.65	
	14	0.74	-10.15	-8.33	-9.51	-0.60	
	15	1.29	-9.44	-6.66	-9.25	0.83	
	16	0.80	-10.10	-6.33	-9.72	0.70	
	17	1.16	-10.90	-6.65	-10.44	0.00	
	18	0.58	-11.37	-8.03	-10.39	-0.01	
	19	1.02	-10.97	-7.07	-10.04	-0.18	
	20	1.41	-10.59	-6.03	-9.82	0.24	
	21	1.46	-11.11	-6.51	-10.88	-0.47	
	22	0.68	-10.44	-7.49	-10.30	-0.12	
	23	1.37	-11.06	-6.53	-10.19	0.68	
	24	0.67	-11.23	-6.43	-10.34	-0.61	
	25	-65.82	-70.25	-72.75	-69.74	-0.28	
	26	-26.09	-35.13	-9.69	-34.65	0.05	
	27	-30.03	-37.70	-9.41	-37.18	-0.17	
	28	-31.34	-38.81	-5.63	-38.48	-0.71	
	29	-32.82	-39.64	-7.09	-39.20	-0.42	
	30	-34.34	-40.56	-9.74	-40.53	-0.89	

MORE TOOLS TO MONITOR HEALTH OF INSTRUMENTS

AT THE STATION

ROUTINE PROCEDURES: SITE CHECK

• Upon arriving at monitoring site:

- Note outside conditions
 - Weather conditions, trees, shelter condition, potential sources, pests, anything abnormal
 - E.g.: construction activity, fires nearby could interfere with measurements or even contaminate instruments and sample lines.

Is there anything here that could be affecting the data?

Some things cannot be seen from the numbers alone

OFF-SITE THINGS TO NOTICE

This is going on less than 0.5 miles upwind from one of my stations

Could anybody guess why it is important to have boots on the ground for this instrument?

ROUTINE PROCEDURES: SITE CHECK

Check for obvious issues:

- Instruments and computers in fault conditions/crashed
- Gas lines disconnected, probes damaged
- Damaged meteorological equipment
 - Do instantaneous values in logger match what your eyes see?
- Incorrect clocks and/or timers, ensure actual time is correct

GAS INSTRUMENTS: PREVENTIVE MAINTENANCE

- Preventive maintenance:
 - Prevents downtime and costly repairs
 - Increases data capture
 - An ongoing element of quality control
 - Incorporate into the daily routine

THE INSTRUMENT RACK

South Coast Air Quality Management District Monthly Maintenance Report Thermo 42i NO/NO2/NOX Analyzer

See SOP for Maintenance Sheet Instructions				
Location: WSLA	Month & Year: NOV 2018			
Station # 70091	Technician: P. Lam			
Instrument Serial # CM 08360045	AQMD Property # 0016734			

DATE:	1116	11/13	11/20	11/28	
TIME:	1001	1201	1142	11:15	
Change Filter	Ч	Ч	Y	Y	
PMT Supply (-7001100 V)	~ 917 6	-916.9	-917.6	-916.1	
Internal Temp (8 - 47°C	32.8	33.4	31.2	33.4	
Chamber Temp (47 - 51°C)	50.4	50.5	50.1	50.1	
Pressure (50-300mmHg)	274.3	277.9	274.6	2758	
Sample Flow (0-1.0 Lpm)	0.582	0 589	0.582	0.581	
Ozonator Flow (OK)	OK	oK	014	OK	
Alarm	Ø	1	Q	Ø	
NO BKGN (Zero)	11.1	10.9	11.1	12.6	
NOX BKGN (Zero)	11.4	11.1	11.3	14.0	
NO COEF (Span)	1.150	1.150	1.150	1.310	
NO2 COEF (Span)	1.000	1.000	1.000	1.000	
NOX COEF (Span)	1.000	1.000	1,000	1.000	

DATE:		TELEN	IETRY	CHE	SSEL
Pullel		ZERO	SPAN	ZERO	SPAN
* 191301	NO				
Comments:	NOX				
1/20 AS-15 NO.	cel, adjust	ed pressure a	kom from h	igh of 275 to	> 285mml+
120 AS-15 NO.	cel, adjust	ed pressure a	kins from h	igh of 275 to	> 285 mm/1
1120 AS-15 NO.	cal, adjust	g h rel pressure a	kom from h	ish of ons to	o 285 mm/l
111310 AS-15 NO.	rassure fly	nd pressure a	kon from h	igh of 275 th	> 285 mmill

MAINTENANCE SHEETS

*At the South Coast AQMD these tasks are generally carried out by the AQIS II (repair/calibration unit)

COMPONENT	ACTION	WHY	WHEN	
Pumps	Rebuild or replace	Wear on diaphragms, vanes, seals, and bearings causes low/unstable vacuum		
Lamps	Adjust lamp position, drive voltage, and/or detector gain. Or replace.	Output decreases over time	When test values indicate deviation from acceptable	
Optics	Clean and/or replace windows and optical filters	Clouding and pitting causes excessive noise, zero/span drift, low response	range and /or on a PM schedule. (Check	
Chemicals & scrubbers	Replace	Due to depletion of reagent or lack of scrubbing effectiveness	manuals or SOP's for recommended	
Critical Orifices	Replace orifice and associated O-rings and sintered filters	Critical orifices will occasionally clog up causing reduction in flow, zero/span drift, high or low response	schedule.)	

FLOW CHECKS!

- Flow checks once a month on samplers (SSI, TSP, BAM, Partisol 2025i, etc.)
- Leak checks + cleanings on certain instruments bi-monthly (BAM1020)
- These regular flow checks help us maintain a higher data capture rate if we find something is amiss

MAINTAINING SAMPLERS

It's important for an operator to catch these little things because they can have an effect on what actually goes through the cyclone

THE DATA IS ONLY AS GOOD AS THE EQUIPMENT

- Ensure validity of flow checks
- Maintain the integrity of sampling instruments
- Observations from the field to help put irregular data into context

COMMENTS TO GIVE INSIGHT

What if a given sample looks much different than what is typical for a given site?

Lab tech: ???

The people at the lab would have no idea without the operator comments

PRETEND YOU ARE THE LAB TECH

- 1. What would you think if there were no comments on the chain of custody?
- 2. How would you process these samples if you knew there was a fire going on during one of these sampling days?
- 3. How would you process these samples if you were told the instrument ran twice as long as the FRM time?
- 4. The samples are treated differently depending on the observations of the operator
- 5. Therefore it is important that operators are consistent in their observations and documentation

THE LOGBOOK

- Record notable things in logbook & downtime log (helpful for data review later on)
- Most questions about data happen several months/years after the event has occurred
- Keeps your memory out of your body and recorded onto something that won't get cleared

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT MONTHLY DOWNTIME LOG

Location: LAXH

Reviewed by:

Month/Year: April 2019 Technician: R. GM

Page: 1 of Z

OC Pollutant		Event	Date & Time		COMMENTS	
QC.	Fonutant	Event	From	То	COMMENTS	nital
1	0.1	Paul	4-2-19	4-2-19		
V	Stofich	Failur	10:32	10:33	42 second power failure recorded on 8832	PC
1	.411	Weckly	4-4-19	4-4-19	Zero A.I. Change Filters, Analoy output Test	0
V	Gases	Maint	0946	1002	Charled manifold catch jar (Spiders)	FC
AX	All	MANUAL Make-up	4-5-19	4-5-19	RAM MANUAL make up PES for OZ, NOZ, NOX	DI
H/	Gasis	PL	0825	0935		PC
/	2011	Tripped -	4-5-19 44-19	4-5-19	MFC warning on T700, PCS bad overnight Arrived	
V	COTA	power	~ 22:00	0825	@ station to Find FOIH powered off. Reset ZOIH power	FC
ac	7700	High Pressure	4-6-19	4-9-19	MER Press Werning NOx PCS bod from 4-6-19 7	91
11	1 700	MFC			4-9-19	m
1×1	All	Manual Makeup	4-9-19	4-9-19	RAN MANUAL PC For NOX HNOL & relacated	571
IV	Gasis	FL '	0937	1028	701H outlet	PC
. [All	Weibly	4-9-19	4-9-19	ZUND AIT, Charge Filters, Replaced 1 Direction	RI
V	Gases	Mant	1028	1054		r
(OL LAA	Strong.	4-12-19	4-12-19	Strong smell of asphalt/paving - Winds coming	21
V	248 HON	Smell	0934	1030	from SW of station - Excavation ongoing-	110
. /	AU	weekly	4-18-19	4-18-19	- Asi of filles	RI
VI	GASES	Maint	0848	0902	Cero Atit: Change Filters	-
1	All	Weekly	4-24-19	4-24-19		0.
V	GIASUS	Maint	0846	0859	Zero Air Change Filters	Jac
n.1	AIL	Calibration	4/2/0/14	4/26/15	2 Replaced Bud Rup. +	Lu
AT	Quy	REDAX	7:46	12:17	(6 As-FS (a),	the
11	J		, L		> Adusted Output Analog Zero & Span	1-8
		~				15

DOWNTIME LOG

VERY important for Level 2 & Level 3 QC to get a feel for what is going on at the station

C: For Data Validation use only

ollutant: All Gas, O3, CO, NO2, SO2, H2S, NOy, BAM, TEOM, TSP, SSI, PM2.5, SASS or Meteorological vent : Maintenance, Calibration, Repair, Instrument Failure or Lost Sample

Date and Time: The time the event began or data became suspect. Comments: Please note thoroughly, specific data related to event and the resolution Version 3.0

ROUTINE PROCEDURES: GOING OFF LINE

Maintenance/Repairs/Calibrations/Audits

- Document periods when instruments are offline
- You can be off-line for up to 15 minutes per hour without "losing" the hour
 - If possible, minimize periods of lost data by going offline in the last 15 minutes of the hour and going back online before the 15 minutes past the hour
- Take the respective channel(s) offline at the data logger

STATION RECORDS

Air monitoring station site documentation includes:

- Instrument logs
- Instrument manuals
- Instrument QC check sheets
- Station log book(s)
- Instrument calibration reports
- SOPs
- Technical bulletins
- AQS (AMP390) / ARB Site reports

All should be **on-site** and available to auditors!

A DAY IN THE LIFE OF THE OPERATOR

Work in the office:

- -Level 1 QC Review
- -Monitor data trends/abnormalities
- -Check-ups instrument health

Work in the field:

- -Gas instrument maintenance
- -Sample collection & maintenance
- -Site Checks (everything ok? Siting criteria being met? Safety? Special events?)
- -Flow Checks (Once/month to ensure validity of data)
- -Maintenance (Cleanings, preventive maintenance, repairs, etc.)

STATION OPERATORS WEAR MANY HATS

It is important to expect the unexpected. Systems go down and instruments fail that require fixing. We have to be flexible because there is no fixed schedule

Sometimes we fight fires, and sometimes we clean toilets. Sometimes we vacuum and garden

SUMMARY

- In general, what is the purpose of a station operator?
- What are some important things to notice as a station operator?
- What are the primary duties of the station operator?
- What is in jeopardy if the station operator does not notice the details?
- The data may not reflect reality and the end user would find out after it's too late (if at all)

QUESTIONS/COMMENTS?

Randy Lam

AQIS I

South Coast AQMD

RLaml@aqmd.gov

