

# AQ-SPEC: Sensor Performance Evaluations

Brandon Feenstra

DAVIS, CA - 06/05/19

PRIMARY QUALITY ASSURANCE ORGANIZATION TRAINING



OUTLINE BACKGROUND AQ-SPEC • LAB • FIELD • FIELD PM SENSOR RESULTS

# HISTORICAL AMBIENT AIR MONITORING

### Clean Air Act (CAA)

South Coast

• Approved Federal Reference (FRM) and Equivalent Methods (FEM)

AQ-SPEC

Air Quality Sensor Performance Evaluation Center

Regional Networks = Determine Regional Attainment of NAAQS

### Recent legislation

- CA Assembly Bill AB617 (Passed)
- House Bill 1284 Crowd Sourcing of Environmental Data Act of 2019 (Introduced)





### LOW-COST SENSORS

- Technical advancements
- Cost Reductions
  - Hardware
  - Connectivity
  - Cloud computing
- Rapidly gaining attention

#### POTENTIAL FOR AMBIENT AIR MONITORING

 Fence-line, community, hot-spot identification, mobile monitoring, personal exposure, science education



2013: EPA Next Generation Air Sensors Conference

2012





2015-2019: New Start-ups

► PLAY

2016-2019: Development of sensor networks

# HOW CAN SENSORS FIT IN?

### Public Health

South Coast

- What are the concentrations?
- What is the spatial-temporal variability?

### Inform Mitigation Efforts

- What are the sources and their relative contribution?
- How much is locally produced versus transported over long distances?

### Inform and Empower the public

- Collect data applicable to personal exposure
- Modify habits to reduce exposure



- o Established in July 2014
  - Over \$600,000 initial investment
- Main Goals & Objectives
  - Provide guidance & clarity
  - Promote successful evolution and use of sensor technology
  - Minimize confusion
- Sensor Selection Criteria
  - Commercially available
  - Criteria pollutants & air toxics
  - Real- or near-real time, time resolution  $\leq$  5-min
  - Sensitivity at ambient levels
  - Continuous operation for two months
  - Retrievable data
  - Low-cost...?



























## FIELD PERFORMANCE EVALUATION

- Sensors tested in triplicates
- Two month deployment (various time intervals, random)
- South Coast AQMD Riverside-Rubidoux Air Monitoring Station
  - Fully instrumented
  - Inland site

South Coast

- 1 km from CA SR 60
- Impacted by regional aerosol formation







### LABORATORY PERFORMANCE EVALUATION



✓ Outer chamber
 ✓ Made of stainless steel
 ✓ Shape: Rectangular
 ✓ Volume: 1.3 m<sup>3</sup>
 ✓ HVAC system
 ✓ Louvered ceiling surface
 ✓ Set of two fans



 ✓ Inner chamber
 ✓ Teflon-coated Stainless Steel
 ✓ Shape: Cylindrical ✓ Volume: 0.11 m<sup>3</sup>

AQ-SPEC

### LABORATORY EVALUATION (HISTORY AND WHAT'S NEXT)

#### **Received Chamber Summer 2015**

- <u>AQ-SPEC staff</u> worked closely with the chamber system integrator to customize the system to the anticipated needs and requirements (12 months)
- <u>AQ-SPEC staff</u> developed Methods for Aerosol and Gas testing atmospheres in-house (6 months)

PAPAPOSTOLOU V, ZHANG H, FEENSTRA B, AND POLIDORI A. <u>DEVELOPMENT OF AN ENVIRONMENTAL CHAMBER FOR EVALUATING THE</u> <u>PERFORMANCE OF LOW-COST AIR QUALITY SENSORS UNDER CONTROLLED CONDITIONS</u>. ATMOSPHERIC ENVIRONMENT, 171: 82-90, 2017

#### State-of-the-art system

Systematically evaluate performance of sensors

Produce stable and reproducible PM and Gas test atmospheres

Produce a wide range of known target/interferent pollutant concentrations, temperature and relative humidity conditions

Sensor data communication options

### **EVALUATION PARAMETERS:**

- Intra-model variability
- Accuracy

South Coast

- Precision
- Coefficient of Determination (R<sup>2</sup>)
- Data Recovery
- Climate Susceptibility
- Interferent (monodisperse aerosols)

# 16 Lab Evaluations Completed

www.aqmd.gov/aq-spec/evaluations/laboratory

### Challenges:

- Stability of PM<sub>10</sub> atmospheres
  - Due to nature of test particles
- Sensor performance degradation experiments
- Temperature and RH cycling tests for long periods of time

• Developing:

South Coast

- ASTM D22.05 Testing Protocol
  - Low-Cost Indoor Air Quality sensors for measuring CO<sub>2</sub> and PM<sub>2.5</sub>
- VOC Sensor Testing Protocol
  - Total VOC, speciated VOC
- New contract in place for a second chamber system (delivered end of 2019) to accommodate testing of 20+ sensors simultaneously, aging/vibration/wind effects/rapid climatic changes experiments:
  - Development of sensor performance standards
  - AQ-SPEC Sensor Library program
  - Testing protocol for sensors conducting mobile ambient air measurements

### Active Const Air Quality Sensor Performance Evaluation Center

AQ-SPEC

### PM SENSORS – FIELD EVALUATION RESULTS

In Review: Feenstra, et al. 2019. Performance Evaluation of Twelve Low-cost PM2.5 Sensors at an Ambient Air Monitoring Site, *Atmospheric Environment* 

### PERFORMANCE EVALUATION PARAMETERS

- Intra-model variability
- Accuracy
- Measurement Error
- Impact of local conditions

DATA FILTERS TO IMPROVE INTER AND INTRA-MODEL COMPARISON

- $PM_{2.5} > 50 \ \mu g/m^3 \ removed$
- If reference or any of 3 sensors missing a 1-hr value, data row removed from analysis

South Coast

AQ-SPEC

PERFORMANCE EVALUATION OF TWELVE LOW-COST PM<sub>2.5</sub> SENSORS AT AN AMBIENT AIR MONITORING SITE

| Manufacturer | Model             | Pollutants Measured                                      | Time Resolution | Cost    |
|--------------|-------------------|----------------------------------------------------------|-----------------|---------|
| Aeroqual     | AQY               | PM <sub>2.5</sub> , O <sub>3</sub> , NO <sub>2</sub>     | 1-min           | \$3,000 |
| Airboxlab    | Foobot            | PM <sub>2.5</sub> , CO <sub>2</sub> , VOC                | 5-min           | \$200   |
| Alphasense   | OPC-N2            | PM <sub>2.5</sub>                                        | < 1-min         | \$450   |
| HabitatMap   | Air Beam 1        | PM <sub>2.5</sub>                                        | 1-min           | \$200   |
| Hanvon       | N1                | PM <sub>2.5</sub> , HCHO                                 | 1-min           | \$200   |
| Kaiterra     | LaserEgg          | PM <sub>2.5</sub>                                        | < 1-min         | \$200   |
| PurpleAir    | PA-II             | PM <sub>2.5</sub> , PM <sub>10</sub> , PM <sub>1.0</sub> | < 1-min         | \$230   |
| SainSmart    | Pure Morning P3   | PM <sub>2.5</sub> , CO <sub>2</sub> , HCHO               | < 1-min         | \$170   |
| Shinyei      | PM Evaluation Kit | PM <sub>2.5</sub>                                        | 1-min           | \$1,000 |
| TSI          | AirAssure         | PM <sub>2.5</sub>                                        | 5-min           | \$1,000 |
| Uhoo         | uhoo              | $PM_{2.5}$ , $O_3$ , $NO_2$ , $CO$ , $CO_2$ , $TVOC$     | 1-min           | \$300   |
| IQAir        | AirVisual Pro     | $PM_{25}, CO_{2},$                                       | < 1-min         | \$270   |

13



### **BIAS ERROR CALCULATIONS**

Mean Bias Error (MBE) = 
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - X_t)$$

Mean Absolute Error (MAE) =  $\frac{1}{n} \sum_{i=1}^{n} |(X_i - X_t)|$ 

#### Where,

X<sub>i</sub> is the 1-hr average measurement by the low-cost sensor
X<sub>t</sub> is the 1-hr average measurement provided by the reference
n is the number of 1-hr time-matched data pairs



### REGRESSION AND MEASUREMENT ERROR

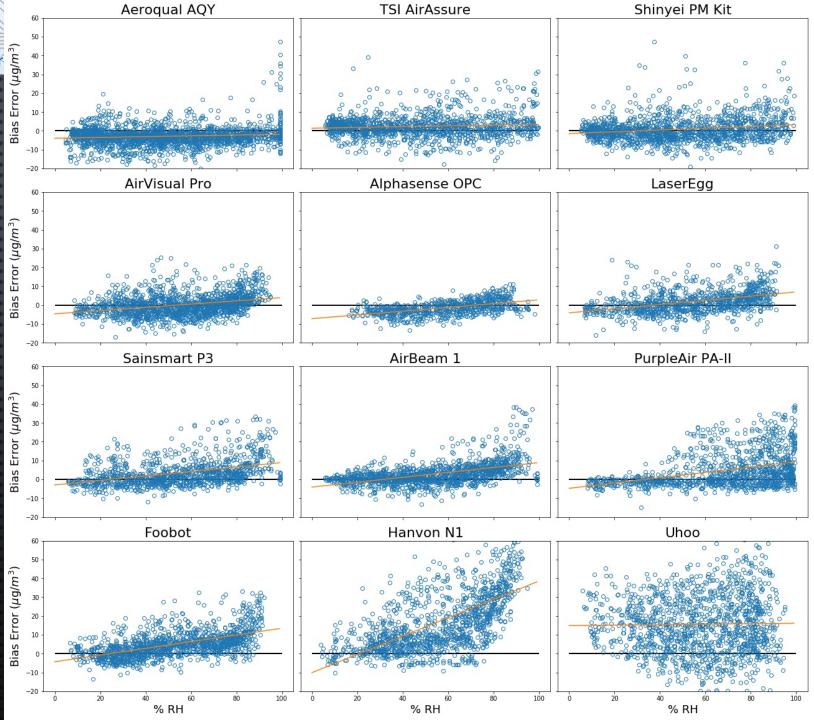
AEROQUAL

- Intercept and Bias
- HANVON & PURPLE AIR & SAINSMART
  - Over-estimate

### KAITERRA LASER EGG

• Importance of R<sup>2</sup>

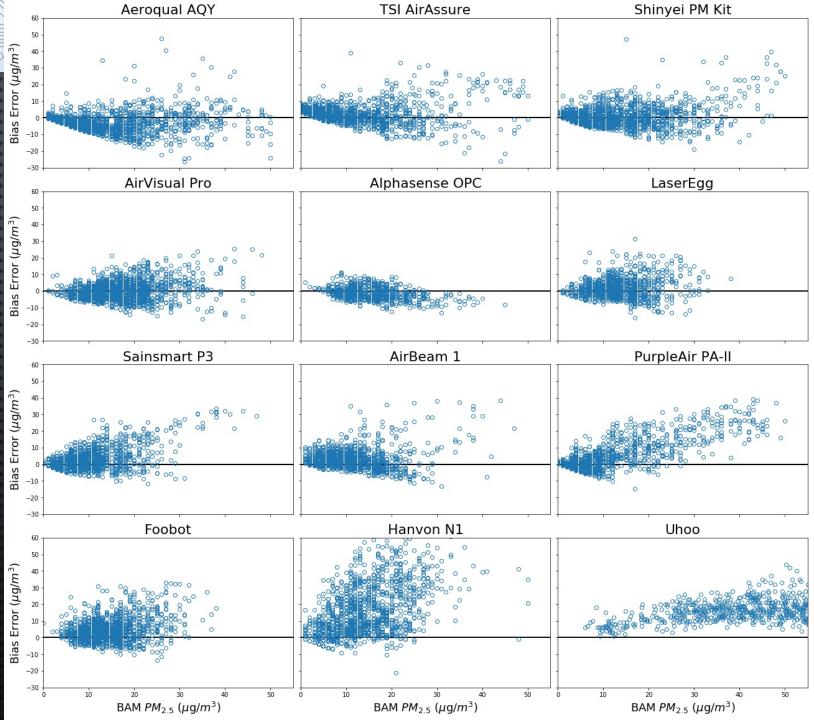
### Иноо


• Poor performance

|                          |   |                | S     | lope   | Intercept |        | Measurement Error (µg/m |      |
|--------------------------|---|----------------|-------|--------|-----------|--------|-------------------------|------|
| Sensor                   | # | R <sup>2</sup> | Slope | 95% CI | Intercept | 95% CI | MBE                     | MAE  |
| Aarogual                 | 1 | 0.78           | 0.99  | 0.02   | -2.75     | 0.39   | -2.9                    | 4.5  |
| Aeroqual                 | 2 | 0.79           | 1.01  | 0.02   | -3.08     | 0.38   | -3.0                    | 4.7  |
| AQY                      | 3 | 0.79           | 0.94  | 0.02   | -2.63     | 0.35   | -3.4                    | 4.6  |
| Airboxlab<br>Foobot      | 1 | 0.57           | 1.32  | 0.06   | 0.28      | 1.00   | 5.0                     | 6.4  |
|                          | 2 | 0.54           | 1.08  | 0.05   | 1.35      | 0.86   | 2.6                     | 4.7  |
|                          | 3 | 0.54           | 1.29  | 0.07   | 4.89      | 1.03   | 9.2                     | 9.5  |
| Alphasense               | 1 | 0.67           | 0.78  | 0.04   | 2.08      | 0.67   | -1.3                    | 3.3  |
| OPC                      | 2 | 0.38           | 0.57  | 0.05   | 1.18      | 0.90   | -5.5                    | 6.5  |
|                          | 3 | 0.40           | 0.67  | 0.06   | 1.03      | 1.01   | -4.2                    | 5.9  |
| HabitatMan               | 1 | 0.59           | 1.08  | 0.05   | 2.03      | 0.63   | 2.9                     | 4.4  |
| HabitatMap<br>Air Beam 1 | 2 | 0.57           | 1.47  | 0.07   | 0.46      | 0.90   | 5.7                     | 6.5  |
| All beall 1              | 3 | 0.57           | 1.66  | 0.08   | -0.62     | 1.01   | 6.8                     | 7.5  |
|                          | 1 | 0.56           | 2.13  | 0.10   | 0.91      | 1.71   | 17.4                    | 18.1 |
| Hanvon N1                | 2 | 0.54           | 1.91  | 0.10   | 2.69      | 1.59   | 15.9                    | 16.3 |
|                          | 3 | 0.58           | 1.73  | 0.08   | 2.39      | 1.34   | 13.1                    | 13.5 |
| Kaitarra                 | 1 | 0.57           | 1.15  | 0.06   | -0.08     | 0.95   | 2.0                     | 4.7  |
| Kaiterra                 | 2 | 0.56           | 1.02  | 0.06   | -0.40     | 0.85   | -0.1                    | 4.1  |
| LaserEgg                 | 3 | 0.58           | 1.01  | 0.06   | -0.80     | 0.82   | -0.7                    | 4.0  |
| PurpleAir                | 1 | 0.95           | 1.68  | 0.03   | -3.06     | 0.51   | 5.0                     | 7.0  |
| 0000000000000            | 2 | 0.95           | 1.63  | 0.03   | -2.84     | 0.49   | 4.7                     | 6.7  |
| PA-II                    | 3 | 0.95           | 1.58  | 0.03   | -2.08     | 0.48   | 4.8                     | 6.7  |
| <u>SainSmart</u>         | 1 | 0.76           | 1.52  | 0.05   | -2.34     | 0.69   | 3.5                     | 5.3  |
| Pure                     | 2 | 0.77           | 1.61  | 0.05   | -2.19     | 0.70   | 4.6                     | 5.9  |
| Morning P3               | 3 | 0.74           | 1.31  | 0.05   | 0.06      | 0.62   | 3.5                     | 5.0  |
| Shinyei PM               | 1 | 0.75           | 1.18  | 0.04   | -1.48     | 0.59   | 0.9                     | 4.5  |
| Evaluation               | 2 | 0.73           | 1.13  | 0.04   | -1.07     | 0.60   | 0.7                     | 4.5  |
| Kit                      | 3 | 0.75           | 1.03  | 0.03   | -1.29     | 0.52   | -0.9                    | 4.2  |
|                          | 1 | 0.73           | 1.10  | 0.04   | 1.61      | 0.60   | 2.9                     | 5.1  |
| TSI<br>Air Assuro        | 2 | 0.74           | 1.08  | 0.03   | 3.66      | 0.57   | 4.7                     | 6.0  |
| AirAssure                | 3 | 0.72           | 1.01  | 0.03   | 3.81      | 0.56   | 4.0                     | 5.6  |
|                          | 1 | 0.00           | 0.09  | 0.11   | 31.11     | 2.03   | 15.4                    | 17.7 |
| Uhoo                     | 2 | -              | -     | -      | -         | -      | -                       | -    |
|                          | 3 | 0.00           | 0.02  | 0.08   | 19.74     | 1.51   | 2.9                     | 10.1 |
| IQAir                    | 1 | 0.69           | 1.15  | 0.04   | -2.38     | 0.73   | 0.2                     | 4.4  |
| AirVisual                | 2 | 0.69           | 1.16  | 0.04   | -2.42     | 0.73   | 0.3                     | 4.4  |
| Pro                      | 3 | 0.72           | 1.31  | 0.04   | -1.97     | 0.77   | 3.4                     | 5.3  |
|                          |   |                |       |        |           |        |                         |      |



## RH AND BIAS ERROR


- BAM is equipped with heater
- Sensors measure at ambient
- Some sensors correct for RH bias
- Typically, see increasing positive bias error as RH increases





### PM CONCENTRATION AND BIAS ERROR

Systematic vs Random error



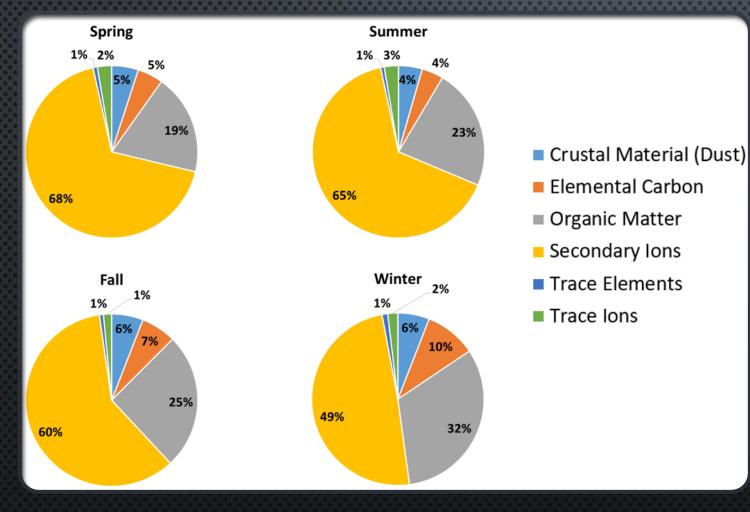
# THANK YOU - QUESTIONS?

AQ-SPEC

Air Quality Sensor Performance Evaluation Center

# AQ-SPEC Team

South Coast


Jason Low Andrea Polidori Vasileios Papapostolou Brandon Feenstra Berj Der Boghossian Wilton Mui Ashley Collier-Oxandale Michelle Kuang Steve Boddeker

### DATA RECOVERY

| Sensor                       |                        | Temp (°C)      | RH (%)      | ΒΑΜ ΡΜ <sub>2.5</sub> (μ | <sup>9</sup> M <sub>2.5</sub> (μg/m³) |     | ecovery (% | <i>(</i> )      |
|------------------------------|------------------------|----------------|-------------|--------------------------|---------------------------------------|-----|------------|-----------------|
| Manufacturer & Model         | Evaluation Dates       | Mean ± SD      | Mean ± SD   | Mean ± SD                | Max                                   | BAM | Sensor*    | Analysis (N) ** |
| Aeroqual AQY                 | 12/22/17 - 03/27/18    | 14.9 ± 5.6     | 48.2 ± 27.1 | 13.8 ± 14.4              | 133                                   | 88  | 99         | 84 (1917)       |
| Airboxlab Foobot             | 07/14/16 - 09/15/16    | 25.2 ± 5.7     | 53.1 ± 21.6 | 14.4 ± 6.4               | 38                                    | 96  | 95         | 86 (1295)       |
| Alphasense OPC-N2            | 07/10/15 - 08/10/15    | 24.7 ± 4.9     | 58.8 ± 19.5 | 15.6 ± 6.6               | 45                                    | 99  | 99         | 98 (732)        |
| HabitatMap Air Beam 1        | 03/17/17 - 05/12/17    | 18.1 ± 5.3     | 53.5 ± 23.2 | 11.1 ± 6.6               | 47                                    | 98  | 99         | 98 (1317)       |
| Hanvon N1                    | 05/20/16 - 07/27/16    | 23.5 ± 6.7     | 54.1 ± 22.0 | 15.2 ± 10.3              | 131                                   | 98  | 88         | 77 (1264)       |
| Kaiterra LaserEgg            | 08/01/16 - 09/26/16    | 24.2 ± 5.8     | 54.6 ± 21.6 | 14.0 ± 6.1               | 38                                    | 96  | 92         | 71 (951)        |
| PurpleAir PA-II              | 12/08/16 - 01/26/17    | $12.3 \pm 4.0$ | 67.9 ± 25.3 | 12.1 ± 11.3              | 73                                    | 97  | 99         | 96 (1124)       |
| SainSmart Pure<br>Morning P3 | 03/17/17 - 05/12/17    | 18.1 ± 5.3     | 53.5 ± 23.2 | 11.1 ± 6.6               | 47                                    | 99  | 93         | 78 (1047)       |
| Shinyei PM Evaluation<br>Kit | 02/05/15 - 04/08/15    | 18.0 ± 6.1     | 48.1 ± 26.3 | 15.2 ± 12.3              | 79                                    | 99  | 99         | 97 (1435)       |
| TSI AirAssure                | 12/18/15 - 02/15/16    | 13.5 ± 5.7     | 47.6 ± 27.3 | 13.2 ± 11.3              | 69                                    | 96  | 93         | 91 (1299)       |
| Uhoo                         | 08/07/17 - 10/06/17    | 24.2 ± 6.3     | 55.7 ± 21.5 | 17.1 ± 7.3               | 51                                    | 99  | 79***      | 92 (1333)       |
| IQAir Air Visual Pro         | 08/02/17 - 10/05/17    | 24.5 ± 6.2     | 55.9 ± 21.0 | 17.2 ± 7.3               | 51                                    | 99  | 99         | 98 (1535)       |
|                              | Mean of Means $\pm$ SD | 20.1 ± 4.6     | 54.3 ± 5.3  | $14.2 \pm 2.0$           |                                       |     |            |                 |

### SUMMARY STATISTICS AND INTRA-MODEL VARIABILITY FOR SENSOR TRIPLICATES

|                           | <b>c</b>       |               |                |                   |
|---------------------------|----------------|---------------|----------------|-------------------|
|                           | Senso          | Mean of Means |                |                   |
| Sensor                    | 1              | 2             | 3              | Mean ± SD (µg/m³) |
| Aeroqual AQY              | 9.8 ± 11.5     | 9.7 ± 11.7    | 9.3 ± 10.8     | 9.6 ± 0.24        |
| Airboxlab Foobot          | 19.7 ± 10.3    | 17.3 ± 8.6    | 24.0 ± 10.3    | 20.3 ± 2.75       |
| Alphasense OPC-N2         | $14.3 \pm 6.2$ | 10.1 ± 6.1    | $11.4 \pm 7.0$ | 11.9 ± 1.74       |
| HabitatMap Air Beam 1     | 14.1 ± 9.3     | 17.0 ± 12.8   | 18.0 ± 14.5    | $16.4 \pm 1.64$   |
| Hanvon N1                 | 32.0 ± 21.7    | 30.5 ± 19.7   | 27.6 ± 17.3    | $30.0 \pm 1.80$   |
| Kaiterra LaserEgg         | 15.6 ± 9.2     | 13.5 ± 8.2    | 12.9 ± 8.0     | $14.0 \pm 1.16$   |
| PurpleAir PA-II           | 16.9 ± 19.1    | 16.5 ± 18.6   | 16.7 ± 18.0    | $16.3 \pm 0.13$   |
| SainSmart Pure Morning P3 | 14.6 ± 12.2    | 15.7 ± 12.8   | 14.7 ± 10.6    | $15.0 \pm 0.51$   |
| Shinyei PM Evaluation Kit | 14.8 ± 13.1    | 14.6 ± 12.7   | 13.0 ± 11.5    | $14.1 \pm 0.80$   |
| TSI AirAssure             | 15.6 ± 13.4    | 17.4 ± 13.0   | 16.7 ± 12.4    | 16.6 ± 0.75       |
| Uhoo                      | 32.6 ± 14.9    | -             | 20.1 ± 11.0    | 26.3 ± 6.23       |
| IQAir Air Visual Pro      | 17.5 ± 10.2    | 17.6 ± 10.2   | 20.7 ± 11.4    | 18.6 ± 1.51       |



RUBIDOUX SEASONAL CHEMICAL COMPOSITION OF PM<sub>2.5</sub>

Seasonal average chemical composition of PM2.5 between 2002 and 2013 at Rubidoux monitoring station. Data adapted from Hasheminassab et al. (2014).

## OPC METHODOLOGY

#### Detects by:

#### Outputs:

#### Possible issues:

Type 1: Optical Particle Counter Sizing individual particles by how they scatter light; counts particles per size bin (e.g., 16 size channels); converts to a "mass" concentration based on assuming particles are spheres and have a certain density. Manufacturer dependent. Possibilities include: -Count per size bin -Estimated mass for PM<sub>1</sub>, PM<sub>2.5</sub>, PM<sub>10</sub>

- Under-counting at high concentrations
- Bias due to assumptions (e.g., density)
- Measurement artifacts

Type 2: "Total scattering" type sensor Particles as a group scatter light – this is converted to an estimated concentration (e.g. mass or number of particles per unit volume) Usually a single numeric output: voltage, calculated concentration

- Upper and lower detection limit issues
- Potential bias due to big particles (e.g., >10 um)