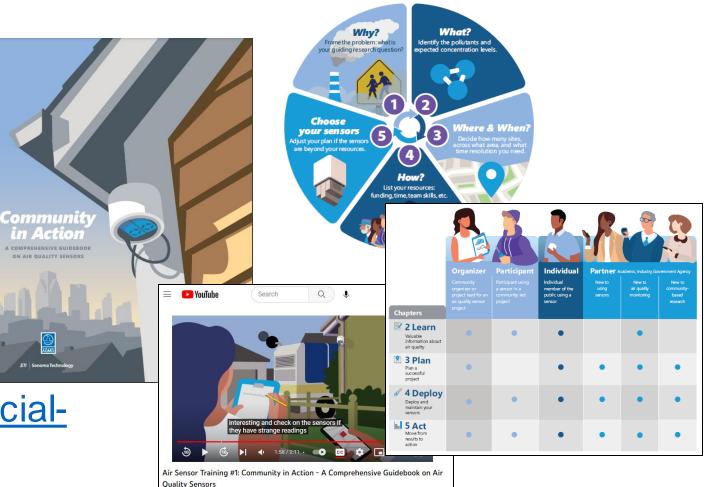


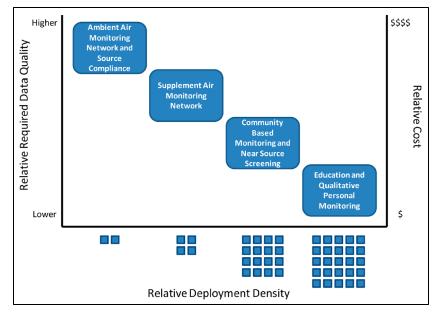
Wilton Mui Program Supervisor, AQ-SPEC Monitoring and Analysis Division South Coast AQMD


2024 PQAO Training | February 27-28, 2024 |Riverside, CA

Sensor Educational Toolkit

- Product of US EPA STAR grant
- Engaging videos
- Resources for data analysis and interpretation
- Digestible sensor guidebook
- Aspects covered
 - Project planning
 - Sensor installation and deployment advice
 - Limitations and opportunities

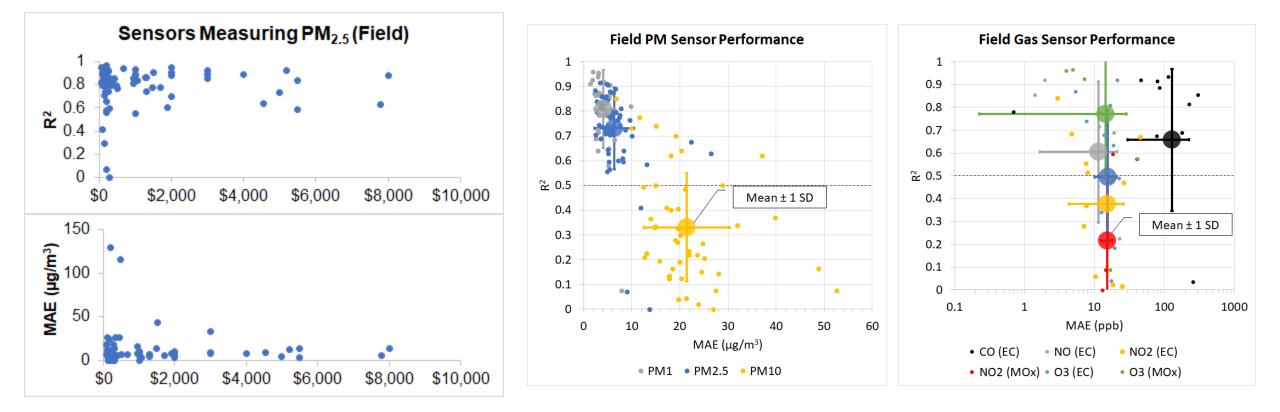
www.aqmd.gov/aq-spec/specialprojects/star-grant



Planning a Sensor Project

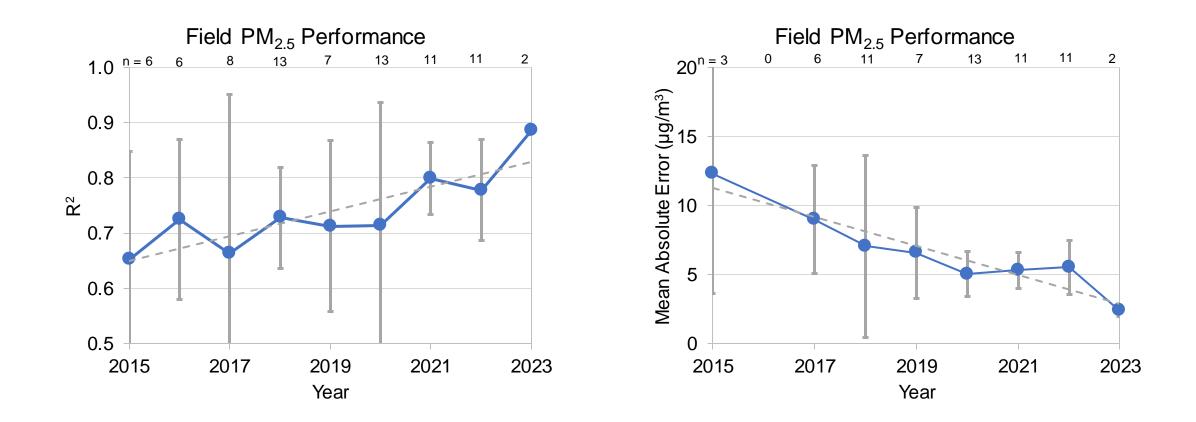
Polidori A., Papapostolou V., Collier-Oxandale A., Hafner H., and Blakey T. (2021) Community in Action: A Comprehensive Guidebook on Air Quality Sensors.

Application	Implementation
Informational/Educational	Sensors given to individuals, liberal setup and operation
Personal Exposure	Sensors given to individuals, sensors move with them
Area Characterization	Sensor network set up in a broad area, consistent setup and operation
Source Identification/Characterization	Sensors strategically set up around and downwind of a source, consistent setup and operation
Supplemental to Regulatory	Sensors set up between regulatory monitor locations to fill in gaps, consistent setup and operation



2024 PQAO Training | February 27-28, 2024 |Riverside, CA

Figure credit: Snyder et al., 2013



Sensor Performance in General

Sensor Performance Improvements

Quality Considerations: Single Sensor

PM

- Size range of particles of interest
 - Most PM sensors are responsive to $D_{\rm p}$ ~0.3 to 10 μm
- OPC vs. nephelometer
 - Marketed behavior vs. invariant response
- Sampling mechanism
 - Passive, fan, or pump
- Sample conditioning
 - Humidity control
- Varying sensor response to composition change
 - Calibration function

Gas

- Working principle
 - Electrochemical cell vs. metal oxide
- Climate effects
 - Temperature
 - Humidity
- Interferences
- Lifespan/drift

Quality Considerations: Network of Sensors

- Same as for a single sensor, and...
- Network size/density
- Spatial distribution strategy
- Communications reliability
- Power reliability
- Managing drift/calibrations
- Outlier sensor dilemma

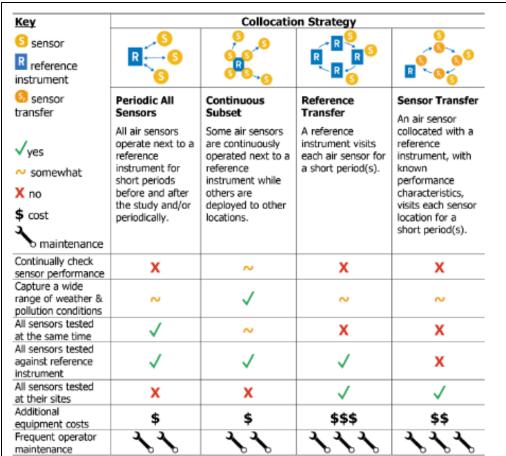
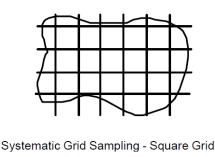
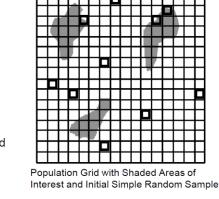
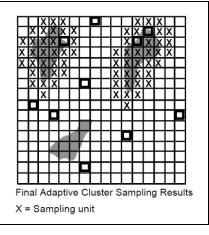


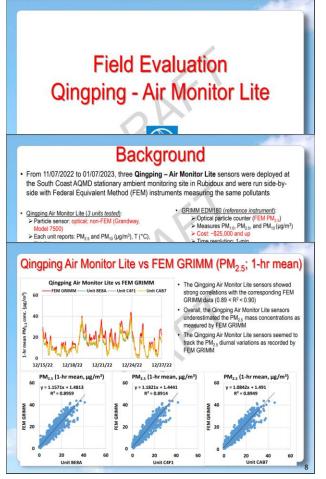
Figure credit: US EPA. (2022) The Enhanced Air Sensor Guidebook

Quality Considerations: Sampling


- Siting
 - Height
 - Breathing height, or 2+ m AGL?
 - Location/Sources/Obstructions
 - Ambient, or near emission?
 - 1+ meter horizontal distance
 - Protected from elements
 - Unobstructed air flow
- Spatial Distribution
 - Gridded
 - Judgmental
 - Adaptive/Hotspot ID
 - Mobile/Wearable
- Temporal
 - High time resolution; capture transient events
 - Low time resolution; higher confidence in each measurement






Figure credit: EPA/240/R-02/005

Quality Considerations: Sensor Performance

- Precision, bias, completeness, etc.
- Resources for judging which sensors could meet project data quality needs:
 - Manufacturer spec sheets
 - Academic literature
 - 3rd party sensor evaluations → AQ-SPEC sensor reports

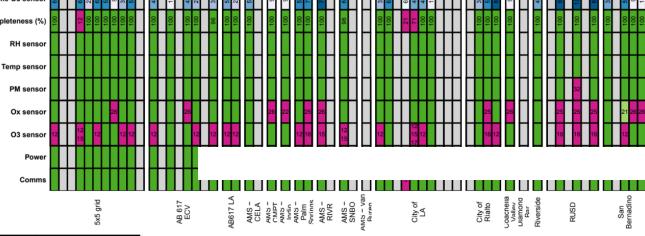
					41467		No.514-0017-904		Annual Advantation (Contract	10000000000000000000000000000000000000		
	Field Evaluation Qingping - Air Monitor Lite					ean PM _{2.5} conc. (μg/m	50		Unit 1744 —	-Unit 1745 — Ui	nit 1746	
	Background • From 11/07/2022 to 01/07/2023, three Qingping – Air Monitor Lite sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by- side with Federal Equivalent Method (FEM) instruments measuring the same pollutants						1/10/21 1/13/21 1/16/21 1/19/21 1/22/21 — FEM T640x — Unit 2 — Unit 3 350 — Unit 3					
the Sout												
Particle Model	Cingoing Air Monitor Life (3 units tested): Particle sensor: optical: non-FEM (Grandway, Model 7500) Each unit reports: PM _{2,5} and PM ₁₀ (ugim ³), T (°C). Section and up						צר 25 (א ⁸ 20 20	0				
Qingping Air Monitor Lite vs FEM GRIMM (PM2.5; 1-hr mean)												
Cingping Air Monitor Lite vs FEM GRIMM FEM GRMM — Unit BERA — Unit C4F1 — Unit C4F7 — Uni								0				
eo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 Average of 3 Sensors, PM _{2.5} Qingping Air Monitor				or Lite vs FE		0	60 120) 180 Time (min)	240 30	00 360	
u 20 u 20 u 12/15/2		Average (µg/m ³)	SD	-2	01	Intercept	MBE ¹	MAE ²	RMSE ³		Ref. SD	Range during the
60 PM ₂		1.9	(µg/m ³)	R ²	Slope	intercept	(µg/m³)	(µg/m ³)	(µg/m ³)	Ref. Average	Rel. SD	field evaluation
	5-min	9.8			0.96 to 1.15	1.7 to 1.8	(μg/m ³) -3.2 to -1.3			11.5 to 12.8	7.8 to 9.0	
	5-min 1-hr		(µg/m ³)		0.96 to 1.15			(µg/m ³)	(µg/m³)			field evaluation
40 WWW 20		9.8	(µg/m³) 7.5	0.85 to 0.93	0.96 to 1.15 0.97 to 1.18	1.7 to 1.8	-3.2 to -1.3	(μg/m ³) 1.8 to 3.6 1.7 to 3.5	(μg/m³) 2.5 to 4.9	11.5 to 12.8	7.8 to 9.0	field evaluation 0.3 to 102.7
	1-hr	9.8 9.8	(µg/m ³) 7.5 7.3 5.0 ge of 3	0.85 to 0.93 0.89 to 0.95 0.91 to 0.96	0.96 to 1.15 0.97 to 1.18	1.7 to 1.8 1.4 to 1.5 1.4 to 1.6	-3.2 to -1.3 -3.2 to -1.3 -3.2 to -1.2 vs GRIMM &	(µg/m ³) 1.8 to 3.6 1.7 to 3.5 1.5 to 3.3 T640, PM ₁₀	(μg/m ³) 2.5 to 4.9 2.2 to 4.5 1.7 to 3.7	11.5 to 12.8 11.5 to 12.8 11.5 to 12.9	7.8 to 9.0 7.6 to 8.7 5.1 to 5.8	field evaluation 0.3 to 102.7 0.4 to 43.9
40 W 40 W 20	1-hr	9.8 9.8 9.8 Averaç	(µg/m ³) 7.5 7.3 5.0 ge of 3	0.85 to 0.93 0.89 to 0.95 0.91 to 0.96	0.96 to 1.15 0.97 to 1.18 0.96 to 1.18	1.7 to 1.8 1.4 to 1.5 1.4 to 1.6	-3.2 to -1.3 -3.2 to -1.3 -3.2 to -1.2	(μg/m ³) 1.8 to 3.6 1.7 to 3.5 1.5 to 3.3	(μg/m ³) 2.5 to 4.9 2.2 to 4.5 1.7 to 3.7	11.5 to 12.8 11.5 to 12.8 11.5 to 12.9	7.8 to 9.0 7.6 to 8.7 5.1 to 5.8	field evaluation 0.3 to 102.7 0.4 to 43.9 2.7 to 27.9
40 WWW 20 WE	1-hr	9.8 9.8 9.8 Averag Sensor Average	(µg/m ³) 7.5 7.3 5.0 ge of 3 s, PM ₁₀ SD	0.85 to 0.93 0.89 to 0.95 0.91 to 0.96 Q	0.96 to 1.15 0.97 to 1.18 0.96 to 1.18 ingping Air M	1.7 to 1.8 1.4 to 1.5 1.4 to 1.6 Monitor Lite v	-3.2 to -1.3 -3.2 to -1.3 -3.2 to -1.2 vs GRIMM & MBE ¹	(µg/m ³) 1.8 to 3.6 1.7 to 3.5 1.5 to 3.3 T640, PM ₁₀ MAE ² (µg/m ³)	(μg/m ³) 2.5 to 4.9 2.2 to 4.5 1.7 to 3.7 RMSE ³ (μg/m ³)	11.5 to 12.8 11.5 to 12.8 11.5 to 12.9 GRIMM	7.8 to 9.0 7.6 to 8.7 5.1 to 5.8 // & T640 (P	field evaluation 0.3 to 102.7 0.4 to 43.9 2.7 to 27.9 M ₁₀ , μg/m ³) Range during the
WWING TO THE	1-hr 24-hr	9.8 9.8 9.8 Averag Senson Average (µg/m ³)	(μg/m ³) 7.5 7.3 5.0 ge of 3 s, PM ₁₀ SD (μg/m ³)	0.85 to 0.93 0.89 to 0.95 0.91 to 0.96 Q R ²	0.96 to 1.15 0.97 to 1.18 0.96 to 1.18 ingping Air M Slope	1.7 to 1.8 1.4 to 1.5 1.4 to 1.6 Monitor Lite of Intercept	-3.2 to -1.3 -3.2 to -1.3 -3.2 to -1.2 vs GRIMM & MBE ¹ (μg/m ³)	(µg/m ³) 1.8 to 3.6 1.7 to 3.5 1.5 to 3.3 T640, PM ₁₀ MAE ² (µg/m ³) 16.2 to 20.1	(μg/m ³) 2.5 to 4.9 2.2 to 4.5 1.7 to 3.7	11.5 to 12.8 11.5 to 12.8 11.5 to 12.9 GRIMM Ref. Average	7.8 to 9.0 7.6 to 8.7 5.1 to 5.8 A & T640 (P Ref. SD	field evaluation 0.3 to 102.7 0.4 to 43.9 2.7 to 27.9 M ₁₀ , μg/m ³) Range during the field evaluation

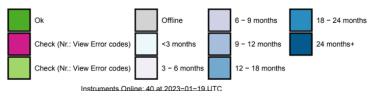
Quality Contribution: Sensor Performance Reports

PM Sensors									
Sensor Image	Make (Model)	Est. Cost (USD)	Pollutant(s)	*Field R ²	[*] Lab R ²	[*] Field MAE (μg/m ³)	*Lab MAE (µg/m³)	Summary Report	
	Aeroqual (AQY-R)	\$5,000	PM _{2,5}	0.66 to 0.81		2.9 to 5.1			
	Aeroqual (AQY v0.5) Discontinued	\$3,000	PM _{2.5}	0.84 to 0.87	0.99		28.8 to 36.0	PDF (1,178 KB)	
	Aeroqual	\$4,000	PM _{2.5}	0.76 to 0.81	0.99	4.2 to 5.3	5.4 to 15.1	PDF (674 KB)	
	(AQY v1.0)		PM ₁₀	0.56 to 0.68		35.4 to 38.8			
3	Aeroqual	\$1,490	PM _{2.5}	0.46 to 0.67	0.99	4.4 to 6.2	11.9 to 32.4	PDF	
Ξ	(S500-PM)		PM ₁₀	0.15 to 0.24		13.5 to 18.0		(702 KB)	
	AethLabs (microAeth)	\$6,500	BC (Black Carbon)	0.79 to 0.94					
1	Airly	\$1,000	PM _{1.0}	0.79 to 0.89		4.2 to 5.3			
-			PM _{2.5}	0.83 to 0.89		4.5 to 5.0			
			PM ₁₀	0.34 to 0.37		19.3 to 19.7			
	Air Quality Egg	\$249	PM _{1.0}	0.86 to 0.88	0.99	2.1 to 2.3	7.0 to 7.3	PDF (771 KB)	
	(2018 Model)		PM _{2.5}	0.84 to 0.85	0.99	4.4 to 5.3	6.1 to 6.6		
No. of Concession, Name			PM ₁₀	0.12 to 0.13	-	16.4 to 19.2		(//1 KD)	
0	Air Quality Egg (Version 1)	\$200	PM	~ 0.0					
	Air Quality Egg	\$240	PM _{2.5}	0.79 to 0.85					
$\overline{}$	(Version 2)	9240	PM ₁₀	0.31 to 0.40					
	Air Quality Egg (2022 Model)	50/1	PM _{1.0}	0.84 to 0.89	-	2.9 to 3.9	-	PDF	
			PM _{2.5}	0.88 to 0.90	0.99	6.0 to 7.1	5.0 to 8.0	 PDF (1,039 KB 	
7			PM10	0.29 to 0.52	-	18.5 to 20.8	-	(1,035 KD	
5	AirThiny	\$1,000	PM _{1.0}	0.68 to 0.70		2.4 to 2.5			
	AirThinx (IAQ)		PM _{2.5}	0.54 to 0.57		4.8 to 5.0			
			PM ₁₀	0.03 to 0.05		19.7 to 19.8			
	Airviz Inc. (Speck)	\$150	PM _{2.5}	0.32					
-	Alphasense (OPC-N2)	\$310	PM _{1.0}	0.63 to 0.82	0.99			PDF	
0			PM _{2.5}	0.65 to 0.80	0.99			(1,291 KB)	
-			PM ₁₀	0.45 to 0.57	0.99			(1,251 KD	

Quality Considerations: Other Good **Practices**

Runtime PM2.5 Runtime O3 se


Data Completeness (


O3 sens

- Records/documentation
- Training/SOPs
- Automated QA/QC
- Regular data review
- Maintenance
- Calibrations

PM10 (µg/m ³)	Temp (°F)	Humidity (%)	DewPoint (°C)	QC Comments
21	117.7	26.9	23.8	Temp Exceeds Operating Limit for Sensor
20.5	117.5	27.3	24	Temp Exceeds Operating Limit for Sensor
18	116	28.1	23.7	Temp Exceeds Operating Limit for Sensor
18.9	116.5	27.5	23.6	Temp Exceeds Operating Limit for Sensor
13.5	117.6	27.4	24.1	Temp Exceeds Operating Limit for Sensor

Seal

2024 PQAO Training | February 27-28, 2024 | Riverside, CA

Acknowledgments and Contacts

- South Coast AQMD Management and AQ-SPEC Team:
 - Randy Lam
 - Berj Der Boghossian
 - Michelle Kuang, Ph.D.
 - Payam Pakbin, Ph.D.
 - Andrea Polidori, Ph.D.
 - Jason Low, Ph.D.

AQ-SPEC website <u>www.aqmd.gov/aq-spec</u>

General Email info.aq-spec@aqmd.gov

> Wilton Mui <u>wmui@aqmd.gov</u>