Primary Quality Assurance Organization - Module 3 Training July 28-29, 2015, Sacramento, California

Air Monitoring Data for Informing Clean Air and Climate Policy

Alberto Ayala, Ph.D., M.S.E. Deputy Executive Officer

California Environmental Protection Agency

Air Resources Board

"If you can't measure it, you can't manage it"

- While this may not apply universally, it certainly does to air quality management
- It also applies to managing climate change due to GHG emissions (HFCs, N₂0, CH₄, BC)
- Scientifically and legally defensible monitoring (and other) data underpins every State action

Today's Air Monitoring Network

- Over 250 air monitoring sites statewide
- Combination of filter-based and continuous monitoring technology
- Selected sites for chemical speciation

Air Monitoring Why?

Effect		
Lodges in nose and throat		
fain breathing passages		
		22
Bronchi		2
Air sacs		
	Lodges in nose and thr fain breathing passages nall breathing passages Bronchi	Lodges in nose and throat Main breathing passages mall breathing passages Bronchi

- First and foremost to protect public health
- Link between air pollution and adverse health outcomes is well established and undisputable
- World Health Organization, air pollution, and the Global Burden for Disease
- Pollution costs us lives (and money)
- O₃, CO, NO₂, SO₂, and PM all linked to various morbidity and mortality outcomes
 - Over time, we learn about new airborne threats to health (e.g., exposure to traffic-generated particles)
- New air monitoring data is essential

We have come a long way.....and we have data to prove it

Air Monitoring – Why?

Twenty-five Years Ago

- Unhealthy levels of pollutants were common
- In Los Angeles:
 - Over 100 air pollution alerts annually
 - Over 200 days with unhealthy air annually
 - Peak ozone level several times allowable limits

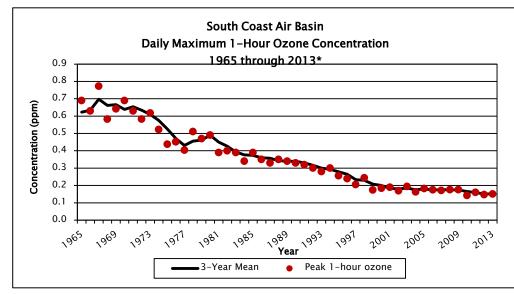
Ten Years Ago

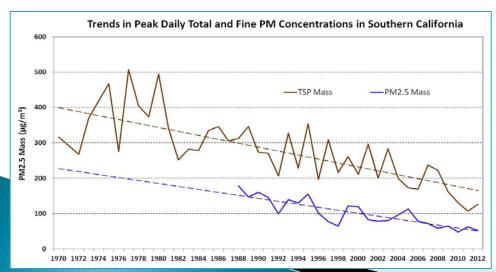
- In San Joaquin Valley:
 - PM2.5 peak concentrations reached 160 ug/m³
 - Concentrations exceeded federal standard approximately 70 days per year
 - All monitoring locations exceeded standard

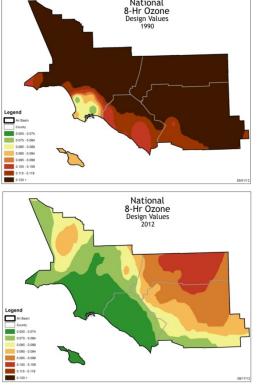
Today...

- NO₂: Attain
- SO₂: Attain
- CO: Attain
- O₃: Los Angeles peak reduced over 60%

Hours of exposure – reduced 90%

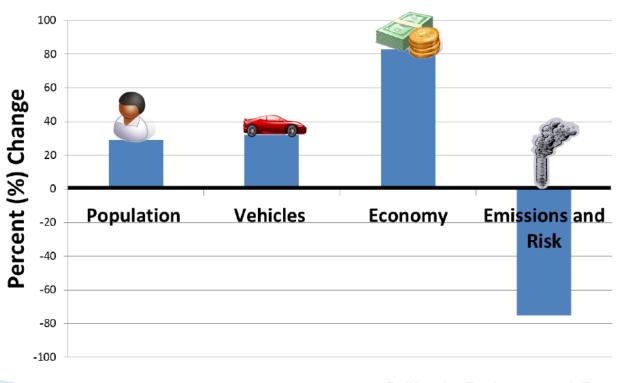

- PM2.5: Levels cut by ~70%
- NOx: Additional actions
- GHGs: Control program in place





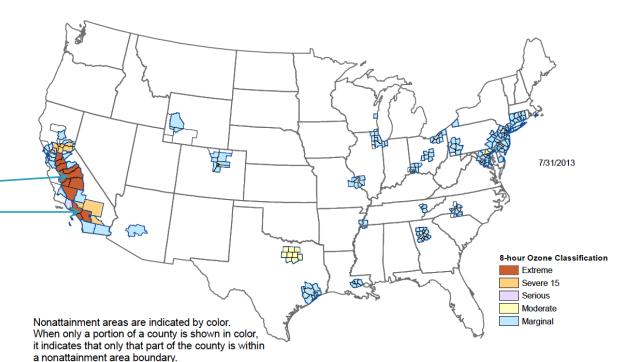
Success of California's Control Programs for Ozone and PM

* Ozone monitoring began in 1979; data through 1978 represent oxidant measurements converted to ozone equivalent. 2013 data are preliminary.



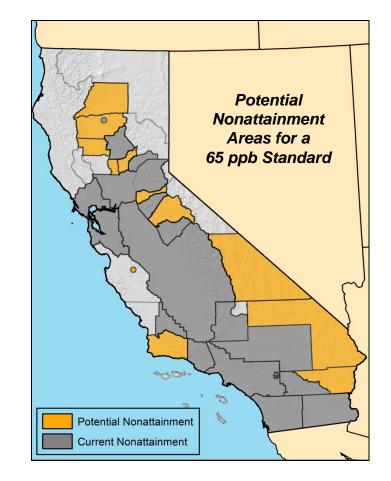
Emissions and risk are trending down while economic development enjoys growth

75% reduction in air toxics statewide since 1990


Ozone attainment – California's biggest challenge

91% of California population in Ozone Non-Attainment areas

Extreme Non-Attainment Areas:

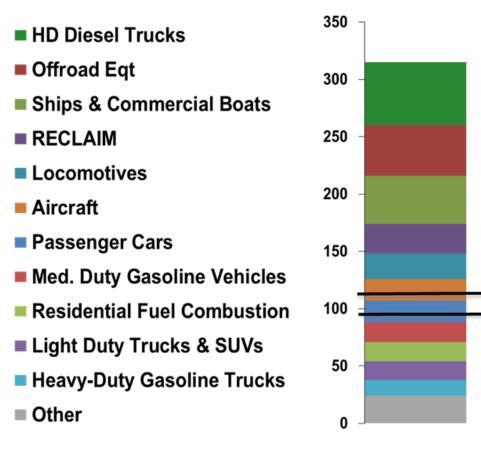

- San Joaquin Valley -
- South Coast –

Additional measures needed beyond current programs for 2031 South Coast attainment goal 8-Hour Ozone Nonattainment Areas (2008 Standard)

Health science suggests even lower ambient O3 levels needed

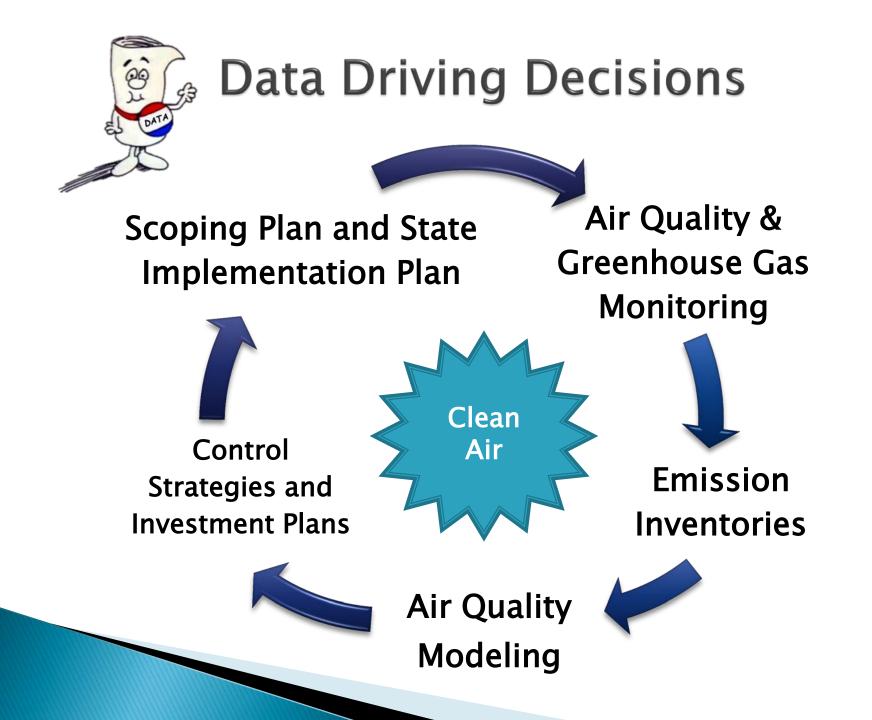
- US-EPA considering lower 8-hr ozone standard
- Decision this October
- A lower standard will bump more CA regions into nonattainment
- Map = example if new standard is 65 ppb

California's Remaining Challenges - PM2.5


For upcoming SIP

- 12 μg/m³ annual PM2.5 standard
- Due in 2016
- 4 nonattainment areas with unique challenges:
 - Calexico
 - Portola
 - South Coast
 - San Joaquin Valley

Control programs, specially for mobile sources, must continue and accelerate


Projected 2023 Inventory in Tons Per Day

Needed by 2023

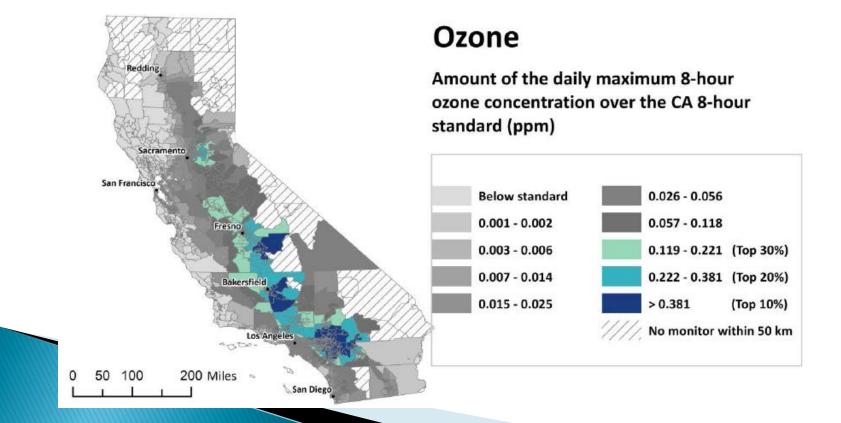
Needed by 2032

Electrons and molecules – the "no compromise" alternative to petroleum combustion

Importance of Air Monitoring Data Key to California's Success

- Vehicle and Engine Emission Standards
- Diesel Control Programs
- Clean and low-carbon Fuel Programs
- Agricultural Burn Programs
- Incentive Programs
- Determining progress towards meeting NAAQS
- Real-time data for decision-making

Air Quality Index for Ozone		
Index Values (Conc. Range)	Air Quality Descriptors	Cautionary Statements for Ozone
0 – 50 (0-60 ppb)	Good	No health impacts are expected when air quality is in this range.
51 – 100 (61-75 ppb)	Moderate	Unusually sensitive people should consider limiting prolonged outdoor exertion
101 – 150 (76-104 ppb)	Unhealthy for Sensitive Groups	Active children and adults, and people with respiratory disease, such as asthma, should limit prolonged outdoor exertion
151 – 200 (105-115 ppb)	Unhealthy	Active children and adults, and people with respiratory disease, such as asthma, should avoid prolonged outdoor exertion; everyone else, especially children should limit prolonged outdoor exertion.
201 – 300 (116-374 ppb)	Very Unhealthy	Active children and adults, and people with respiratory disease, such as asthma, should avoid all outdoor exertion; everyone else, especially children, should limit outdoor exertion.



Air in Other Cities

Air Quality Now (Full Site) Contac

California Communities Environmental Health Screening

- Importance of environmental justice in every action
- Multimedia screening
- Driving investment decisions
- Ambient air monitoring data is key input, for example:

Looking Ahead - Air Monitoring

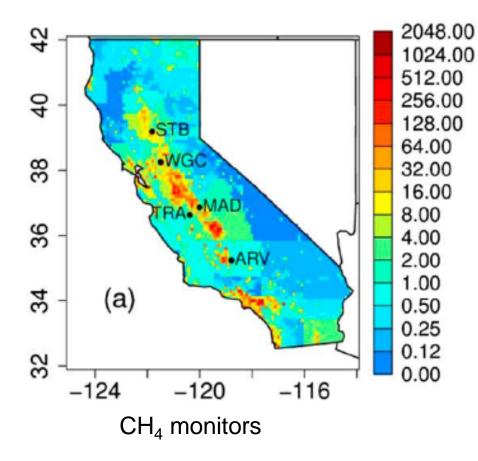
Importance of Technological Advancements

- Keep pace with emerging needs
- Trace/Low Level Monitoring
 - CO and SO_2
- Instrument Innovation
 - Lower Limits of Detection
 - Improved Sensitivity
 - Response Stability
 - Data Reliability
- Improving efficiencies QA/QC
- Low cost sensors (citizen science)
 - Rapidly expanding portable technology
 - South Coast AQ-SPEC laboratory
 - Sensors, cameras, and drones

Particle Count Particle Count PM2.5 PM10

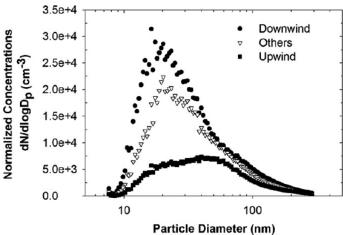
Technological Advancements Access to Real-Time Data

- Public Health
 - Spare-the-air days
 - School flag program
 - No-burn decisions
 - Health advisories
 - Outdoor activity restrictions
- Public is More Informed
 - Easier access to data Smartphones
 - Expectation to have information readily available



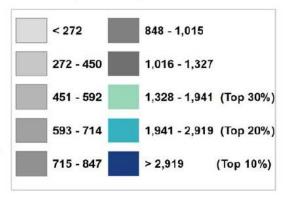
Air Quality Flag PROGRAM Know Your Air Quality to Protect Your Health

Technological Advancements Greenhouse Gas Monitoring



Assessing near-roadway exposure to traffic emissions

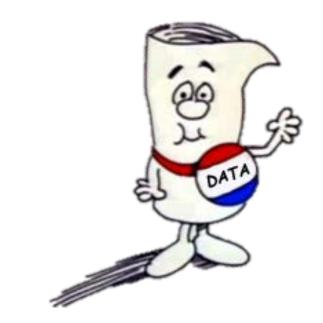
- Mitigation of exposure is important to protect health
- New roadside air monitoring network will help
- Tracking ultrafine particles (e.g., particle counters)



Traffic Density

Vehicle-km per hour divided by road length

Summary


A lot remains to be done:

- De-carbonizing energy and fuels
 - emphasis on e^- and H_2
- De-carbonizing transportation
 - Advanced super-clean technologies, ZEVs (batteries and fuel cells)
- Driving for more system efficiency
 - Smarter, more integrated land use planning, reduced travel demand, traffic system management
- Data quality it starts with you!
- Foundation for clean air decisions
- Critical to achieving our health-based air quality and climate goals

Questions?

