Performance Evaluation of a Condensation Particle Counter Near the I-710 Freeway in Southern California

Primary Quality Assurance Organization Training Module 3: Air Monitoring Instrument Operation July 28-29, 2015

Robert C. Anderson¹, Donald Hammond², Ahmed Mehadi², PhD, Timothy J. Morphy⁴, Andrea Pplidori³, PhD, Jeffrey Wright²

¹TSI Incorporated, ²California Air Resources Board, ³South Coast Air Quality Management District, ⁴Teledyne API

Background

- Exposure to ultrafine particles (UFP) may contribute to heart and lung diseases leading to hospitalization and premature death
- UFP are/will be measured near California roadways by local air districts
- Condensation Particle Counters (CPC) characterize UFP by measuring particle number (PN) concentrations
- 2010: TSI released a water-based CPC (model 3783) intended for long-term, 24/7 operation (network use) in background and near-source (e.g. near-road) environments
- 2013: TSI released updated version of model 3783
- TSI 3783 now sold as TAPI 651

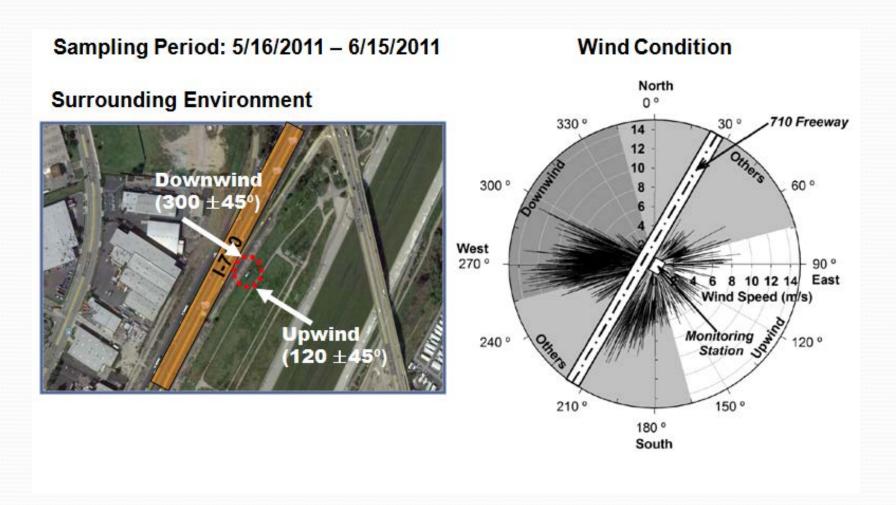
Outline

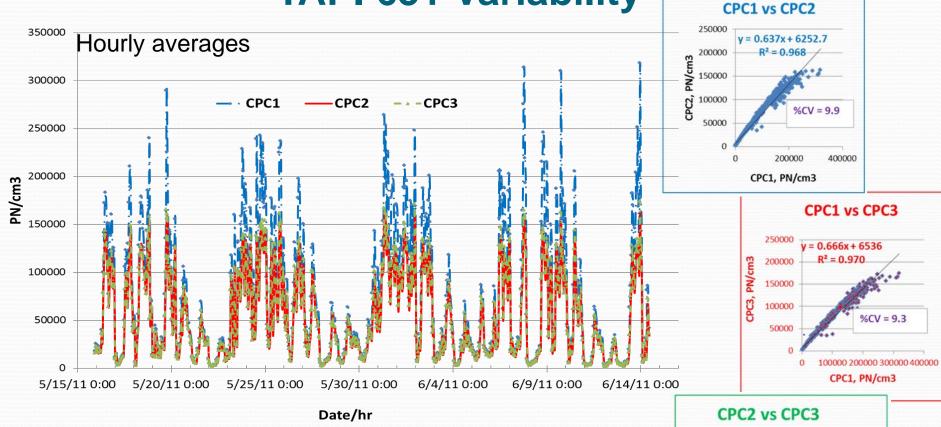
Collaboration between SCAQMD, ARB, UCLA, TSI and TAPI to study the performance reliability of the 3783 TSI model:

- 2011 Study (Phase I): SCAQMD, UCLA, and ARB
 - May 16 to June 14
 - Three CPC models: 3781 (x3), 3783 (x3), and 3785 (x3)
 - Inter- and Intra-model variability

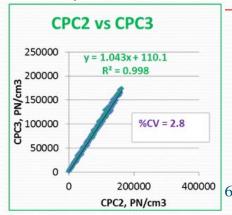
- June 2011 to April 2012
- o 3783 model (x3)
- Continued testing of durability
- Stopped due to continual instrument breakdown
- 2013 Study: ARB, SCAQMD, TSI, and TAPI
 - August 21, 2013 to April 17, 2014
 - Upgraded 3783 model (x3)
 - Testing of durability and precision

Site Location and Instrument Set-up



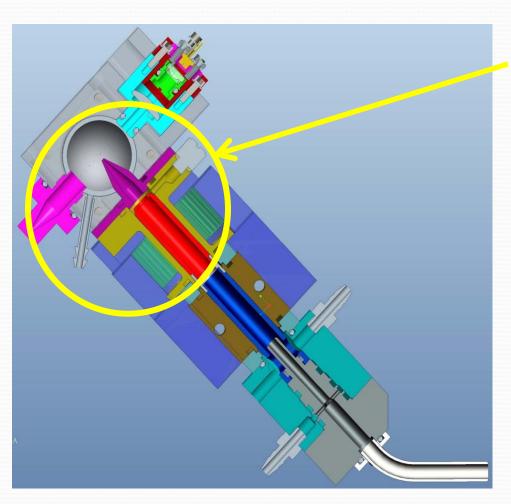

Teledyne 651	
Minimum Detectable Diameter	7 nm
Maximum Detectable PN (#/cm³)	1 x 10 ⁶
Particle Counting Errors	± 10% at 1x10 ⁶ /cm ³
Aerosol Flow Rates (L/min)	0.12 ± 0.012

Site Location and Instrument Set-up



Site is downwind of the I-710 freeway ~50% of the time

2011 Study (Phase I; May 16 - June 14)
TAPI 651 Variability


- TAPI 651 exhibited some intra-model bias
 - Two CPCs within 5%
 - Third CPC differed by ~30%

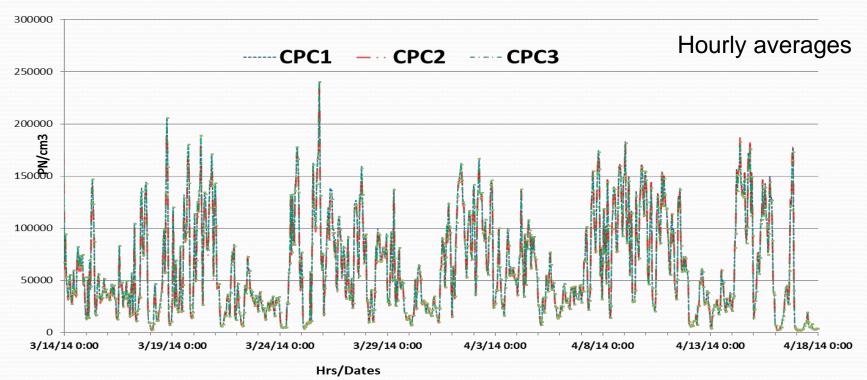
2011 Study (Phase II; June 2011 - April 2012) TAPI 651 Durability

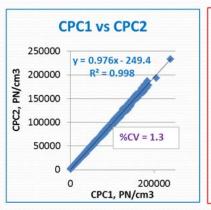
- Assessment based on continued operation of the instrument without major equipment breakdown using routine monitoring practices
- TAPI 651 unable to run for extended periods without major equipment breakdowns:
 - Flooding of the optics system
 - Pulse height out of spec (i.e. decline over time)
 - Clock drift
 - Corrupt data files during download
- Work needed to improve instrument durability and reliability

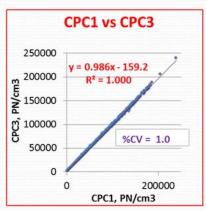
TAPI 651 Design Modifications

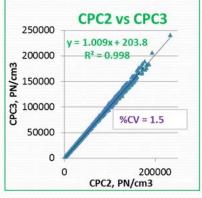
- Vent Assist
- Water Drain
- Longer growth tube accommodates longer wick cartridge

New Protection Filters

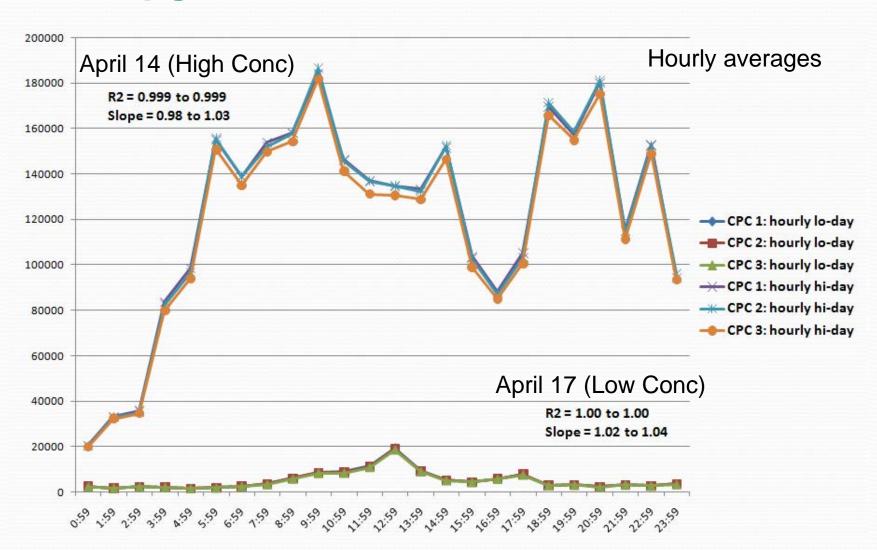


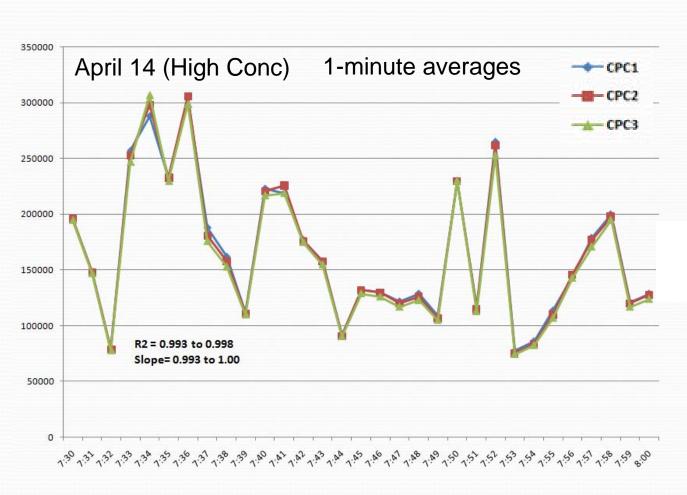


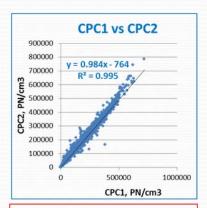

 New ejector pump for better reliability combined with lower water separator temp (7°C vs 20°C)

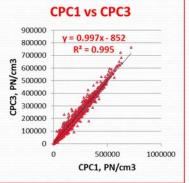

2013 Study (August 21, 2013 – April 17, 2014) Upgraded TAPI 651 Performance

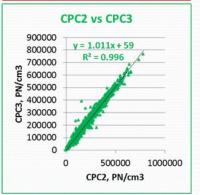
- Set-up
 - Three modified TAPI 651
 - Improved meteorological data
 - CPCs synced with CARBlogger
- Objectives
 - Evaluate precision and durability
- August 21 to December 31, 2013: set-up issues (e.g. old firmware, shared pump)
 - Good durability but low precision
- January 1 to April 17, 2014: substantial work done to improve QA/QC procedures (e.g. new firmware, individual pumps, static dissipative tubing, consistent maintenance procedure)
 - Optimal configuration resulted in reduced intra-model variability








 %CV = Upper bound coefficient of variation;
 U.S. EPA criteria at network level for PM2.5 is 10%



 Excellent correlation even for 1-minute data between March 14 and April 17, 2014

Lessons Learned - QA/QC

- Monthly inlet cleaning is sufficient even at highly polluted locations
- Turn off vacuum pump when replacing wicks and performing inlet cleaning
- Service vacuum pump every year and provide backup pump at site
- Use datalogger when operating CPCs:
 - Time synchronization
 - Prompt review of diagnostic and PN data
- Periodic collocation with an independent CPC is recommended (no calibration standard available)
- > An SOP summarizing these QA/QC checks is available from Teledyne

Conclusions

 When proper QA/QC practices are followed the TAPI 651 operates reliably for extended periods of time. >75% data capture can be expected

Acknowledgement

Monitoring

- Johanna Garcia (ARB)
- Adolfo Garcia (ARB)
- Phil Wagner (ARB)
- Michael Koch (SCAQMD)
- Eric Holden (TAPI)
- Maynard Havlicek (TSI)

Data Support

- Matthew Vona (ARB)
- Aman Bains (ARB)

CONTACTS:

ARB – Ahmed Mehadi: SCAQMD - Andrea Polidori: Teledyne - Timothy J. Morphy: TSI - Robert C. Anderson:

amehadi@arb.ca.gov apolidori@aqms.gov timothy.morphy@teledyne.com robert.aderson@tsi.com

^{*}ARB and SCAQMD participation in the study does not indicate approval or endorsement of a particular product or vendor. Any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the authors and do not necessarily reflect the views of ARB or SCAQMD.