Results and Lessons Learned from Using Low-Cost PM Sensors to Detect Ambient PM$_{2.5}$ and PM$_{10}$

Tim Dye, Levi Stanton, Clinton MacDonald, Kevin Smith, Paul Roberts, and Max Dillon
Sonoma Technology, Inc.
Petaluma, CA

for
PQAO Meeting
Pomona, CA

January 24, 2017
Outline

• Background on air sensors
• Studies
 – PM\textsubscript{10} coal dust
 – PM\textsubscript{2.5} winter PM conditions
 – PM\textsubscript{10} windblown dust
 – PM\textsubscript{2.5} wood smoke
• Lessons learned
Startups (2014)

- AirBase
- Sensaris
- Cairpol
- Airboxlab
- Libelium
- Esensors
- CubeSensor
- Canary
- Lapka
- Sensordrone
Startups (now)
Key Issues

- New technology
- Data logging
- Communications
- Data management
- Cost
- Scale
Evaluation Efforts

- EPA evaluating sensor technology
 - Laboratory and infield evaluations
 - Ozone, NO$_2$, PM, and VOCs

- Joint Research Center (EU)
 - Evaluation for last 4 years

- SCAQMD
 - Air Quality Sensor Performance Evaluation Center (AQ-SPEC)
 - Field and laboratory evaluations
 - Ozone, PM, NO$_x$, CO, VOCs, H$_2$S
Results

• Evaluations
 – Compare to FEM reference

• Results
 – VOCs: Needs more work
 – Gases: Some promise for ozone, CO, NO
 – PM: Good results from some sensors

PM$_{2.5}$
5-min average
$r^2 = 0.78$

PM$_{10}$
1-hr average
$r^2 = 0.81$
Path Forward

- How Good? Evaluations
- How Useful? Field Projects
- How Sustainable? Businesses

- In progress
- ?

Background
1. Study – Coal Dust (PM_{10})

- **Objectives**
 - Determine whether sensors can detect and quantify fugitive PM_{10} from coal piles
 - Identify sensor limitations and technical challenges

- **Study**
 - 2-month study in warm climate
 - Weather station

Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Instrument</td>
<td>MetOne BAM-1020 PM_{10}</td>
</tr>
<tr>
<td></td>
<td>Thermo PDR-1500</td>
</tr>
<tr>
<td>Sensors</td>
<td>Dylos</td>
</tr>
<tr>
<td></td>
<td>AirBeam</td>
</tr>
</tbody>
</table>

Sponsor: Electric Power Research Institute (EPRI)
1. Results – Coal Dust (PM$_{10}$)

- 17 events were identified
 - Short in duration (a few minutes)
 - Concentrations were 2–5 times higher than background
- 37 of 1,392 hours (2.7%) were impacted by windblown dust events

Sponsor: Electric Power Research Institute (EPRI)
1. Results – Coal Dust (PM$_{10}$)

Dylos had good correlation with the BAM for events; weak correlation for all data
2. Study – Winter (PM$_{2.5}$)

- **Objectives**
 - Examine the use of low-cost PM sensors for answering questions about Tribal air quality
 - Conduct intercomparison study and mobile sampling

- **Study**
 - 8-month study in northern Minnesota (Oct-June)
 - Outdoor exposure

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Reference Instrument</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FRM – PM$_{2.5}$ (1-in-6 day)</td>
<td>AirBeam MicroPEM</td>
</tr>
</tbody>
</table>

Sponsor: U.S. EPA and Leech Lake Band of Ojibwe
2. Results – Winter (PM$_{2.5}$)

- The MicroPEM and AirBeam B are well correlated during most time periods between calibration/zeroing.
- The MicroPEM was difficult to zero properly and exhibited significant baseline shifts between calibration/zeroing.

Sponsor: U.S. EPA and Leech Lake Band of Ojibwe
2. Results – Winter (PM$_{2.5}$)

Good correlations (R^2) between 24-hr sensor measurements on FRM sample days for AirBeam and bias-corrected MicroPEM

<table>
<thead>
<tr>
<th></th>
<th>FRM 1</th>
<th>FRM 2</th>
<th>MicroPEM</th>
<th>AirBeam A</th>
<th>AirBeam B</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRM 1</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FRM 2</td>
<td>0.93</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MicroPEM</td>
<td>0.01uc, 0.96bc</td>
<td>0.01uc, 0.89bc</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AirBeam A</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>AirBeam B</td>
<td>0.83</td>
<td>0.85</td>
<td>0.01uc, 0.95bc</td>
<td>NA</td>
<td>1.00</td>
</tr>
</tbody>
</table>

uc Uncorrected MicroPEM PM$_{2.5}$ data

bc Bias-corrected MicroPEM PM$_{2.5}$ is well correlated with the FRMs

Sponsor: U.S. EPA and Leech Lake Band of Ojibwe
3. Study – Windblown Dust (PM_{10})

Objectives
- Can low-cost PM sensors detect dust events?
- How precise are the sensors?
- Are they reliable?
- Can they provide sufficient warning time?

Study
- 3-month springtime study
- School in eastern Santa Barbara County

Equipment

| Reference Instrument | MetOne BAM 1020 (FEM for PM_{10})
| | GRIMM 11-R (Particle counts)
| | MetOne E-BAM (PM_{10}) |
| Sensors | AirBeam (3 units)
| | Alphasense OPC-N2 (3 units) |

Sponsor: Santa Barbara County Air Pollution Control District
3. Results – Windblown Dust (PM$_{10}$)

Alphasense A vs. BAM
Hourly PM$_{10}$ measurements
$R^2 = 0.81$

Alphasense A vs. Alphasense B
Hourly PM$_{10}$ measurements
$R^2 = 0.81$
BAM = $1 \times x + 1.95$

Sponsor: Santa Barbara County Air Pollution Control District
3. Results – Windblown Dust (PM$_{10}$)

Early Detection
Alphasense A measures a peak at 21:21, for a lead time of 39 minutes over the FEM instrument.

Note: BAM reported at begin hour but not available until after the hour.
4. Study – Woodsmoke (PM$_{2.5}$)

• Objectives
 – Use low-cost sensors to provide spatial coverage and engage community
 – Assess the contribution of wood burning to air toxics in Sacramento

• Study
 – Sacramento Metropolitan AQMD project funded by EPA Grant
 – Two existing regulatory monitoring stations, 4 new temporary monitoring sites with FEMs, 9 new sites with low-cost monitors
 – Two-month wintertime study
 – Are certain communities in Sacramento County disproportionately impacted by wood smoke?

<table>
<thead>
<tr>
<th>Equipment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Instrument</td>
<td>MetOne BAM 1020 (FEM for PM$_{2.5}$)</td>
</tr>
<tr>
<td></td>
<td>Aethalometer (BC)</td>
</tr>
<tr>
<td>Sensors</td>
<td>AirBeams</td>
</tr>
</tbody>
</table>

Sponsor: SMAQMD
4. Study – Woodsmoke (PM$_{2.5}$)
4. Study – Woodsmoke (PM$_{2.5}$)
Early exploration of data to understand how well the sensors are doing and how they respond to relative humidity.

\[1.51 \times x - 1.24\]

\[R^2 = 0.72\]

\[n = 151\]
Key Challenges

• New technology
 – Rapid changes; versioning issues with firmware
 – Drift, calibration requirements, and “soiling” issues
 – Hardware issues
 – Unknown lifetime

• Data logging
 – Data acquisition systems don’t always handle sensors
 – Data formats and time standards

• Communications
 – Critical for high data availability
 – More challenging and costly
Key Challenges

- **Data management**
 - More challenging than FEM instrument (60 to 3600 times more data and more uncertainty)

- **Cost**
 - Projects cost much more than one sensor
 - Operations and data management are more intense

- **Scale**
 - 3 sensors vs. 10 sensors vs. 100 sensors
 - Scale affects everything (logistics, data management, reliability, costs)
Path Forward

How Good? Evaluations

How Useful? Field Projects

How Sustainable? Businesses

√ In progress

?
Contact

Tim Dye
Senior Vice President
Chief Business Development Officer
Tim@sonomatech.com
@TimSDye

www.SonomaTech.com
@sonoma_tech