Results and Lessons Learned from Using Low-Cost PM Sensors to Detect Ambient PM_{2.5} and PM₁₀

Tim Dye, Levi Stanton, Clinton MacDonald, Kevin Smith, Paul Roberts, and Max Dillon Sonoma Technology, Inc. Petaluma, CA

for

PQAO Meeting Pomona, CA

January 24, 2017

Outline

- Background on air sensors
- Studies
 - PM_{10} coal dust
 - PM_{2.5} winter PM conditions
 - PM_{10} windblown dust
 - PM_{2.5} wood smoke
- Lessons learned

Background

Startups (2014)

Background

Startups (now)

Key Issues

- New technology
- Data logging
- Communications
- Data management
- Cost
- Scale

Evaluation Efforts

- EPA evaluating sensor technology
 - Laboratory and infield evaluations
 - Ozone, NO₂, PM, and VOCs
- Joint Research Center (EU)
 - Evaluation for last 4 years
- SCAQMD

- Air Quality Sensor Performance Evaluation Center (AQ-SPEC)
- Field and laboratory evaluations
- Ozone, PM, NO_x, CO, VOCs, H₂S

Background

Results

- Evaluations
 - Compare to FEM reference
- Results
 - VOCs: Needs more work
 - Gases: Some promise for ozone, CO, NO
 - PM: Good results from some sensors

Background

1. Study – Coal Dust (PM₁₀)

- Objectives
 - Determine whether sensors can detect and quantify fugitive PM_{10} from coal piles
 - Identify sensor limitations and technical challenges
- Study
 - 2-month study in warm climate
 - Weather station

	Equipment
Reference Instrument	MetOne BAM-1020 PM ₁₀ Thermo PDR-1500
Sensors	Dylos AirBeam

Sponsor: Electric Power Research Institute (EPRI)

1. Results – Coal Dust (PM₁₀)

- 17 events were identified
 - Short in duration (a few minutes)
 - Concentrations were 2-5 times higher than background
- 37 of 1,392 hours (2.7%) were impacted by windblown dust events

Sponsor: Electric Power Research Institute (EPRI)

1. Results – Coal Dust (PM₁₀)

Dylos had good correlation with the BAM for events; weak correlation for all data

2. Study – Winter (PM_{2.5})

- Objectives
 - Examine the use of low-cost PM sensors for answering questions about Tribal air quality
 - Conduct intercomparison study and mobile sampling
- Study
 - 8-month study in northern Minnesota (Oct-June)
 - Outdoor exposure

	Equipment
Reference Instrument	FRM – PM _{2.5} (1-in-6 day)
Sensors	AirBeam MicroPEM

Sponsor: U.S. EPA and Leech Lake Band of Ojibwe

2. Results – Winter (PM_{2.5})

- The MicroPEM and AirBeam B are well correlated during most time periods between calibration/zeroing
- The MicroPEM was difficult to zero properly and exhibited significant baseline shifts between calibration/zeroing

Sponsor: U.S. EPA and Leech Lake Band of Ojibwe

2. Results – Winter (PM_{2.5})

Good correlations (R²) between 24-hr sensor measurements on FRM sample days for AirBeam and bias-corrected MicroPEM

	FRM 1	FRM 2	MicroPEM	AirBeam A	AirBeam B
FRM 1	1.00	-	-	-	-
FRM 2	0.93	1.00	-	-	-
MicroPEM	0.01 ^{uc} 0.96 ^{bc}	0.01 ^{uc} 0.89 ^{bc}	1.00	-	-
AirBeam A	NA	NA	NA	NA	-
AirBeam B	0.83	0.85	0.01 ^{uc} 0.95 ^{bc}	NA	1.00

^{UC} Uncorrected MicroPEM PM_{2.5} data

^{bc} Bias-corrected MicroPEM PM_{2.5} is well correlated with the FRMs

Sponsor: U.S. EPA and Leech Lake Band of Ojibwe

3. Study – Windblown Dust (PM₁₀)

- Objectives
 - Can low-cost PM sensors detect dust events?
 - How precise are the sensors?
 - Are they reliable?
 - Can they provide sufficient warning time?
- Study
 - 3-month springtime study
 - School in eastern Santa Barbara County

$\overline{}$	
	ht
	5000

Reference Instrument	MetOne BAM 1020 (FEM for PM ₁₀) GRIMM 11-R (Particle counts) MetOne E-BAM (PM ₁₀)
Sensors	AirBeam (3 units) Alphasense OPC-N2 (3 units)

Sponsor: Santa Barbara County Air Pollution Control District

3. Results – Windblown Dust (PM₁₀)

Alphasense A vs. BAM Hourly PM_{10} measurements $R^2 = 0.81$

Alphasense A vs. Alphasense B Hourly PM_{10} measurements $R^2 = 0.81$ BAM = 1*x + 1.95

Sponsor: Santa Barbara County Air Pollution Control District

3. Results – Windblown Dust (PM₁₀)

Early Detection Alphasense A measures a peak at 21:21, for a lead time of 39 minutes over the FEM instrument.

Note: BAM reported at begin hour but not available until after the hour

Sponsor: Santa Barbara County Air Pollution Control District

- Objectives
 - Use low-cost sensors to provide spatial coverage and engage community
 - Assess the contribution of wood burning to air toxics in Sacramento
- Study
 - Sacramento Metropolitan AQMD project funded by EPA Grant
 - Two existing regulatory monitoring stations, 4 new temporary monitoring sites with FEMs, 9 new sites with low-cost monitors
 - Two-month wintertime study
 - Are certain communities in Sacramento County disproportionately impacted by wood smoke?

Equipment		
Reference Instrument	MetOne BAM 1020 (FEM for PM _{2.5}) Aethalometer (BC)	
Sensors	AirBeams	

Sponsor: SMAQMD

Sponsor: SMAQMD

Early exploration of data to understand how well the sensors are doing and how they respond to relative humidity.

Sponsor: SMAQMD

Key Challenges

- New technology
 - Rapid changes; versioning issues with firmware
 - Drift, calibration requirements, and "soiling" issues
 - Hardware issues
 - Unknown lifetime
- Data logging
 - Data acquisition systems don't always handle sensors
 - Data formats and time standards
- Communications
 - Critical for high data availability
 - More challenging and costly

Key Challenges

- Data management
 - More challenging than FEM instrument (60 to 3600 times more data and more uncertainty)
- Cost
 - Projects cost much more than one sensor
 - Operations and data management are more intense
- Scale
 - 3 sensors vs. 10 sensors vs. 100 sensors
 - Scale affects everything (logistics, data management, reliability, costs)

Path Forward

Contact

Tim Dye

Senior Vice President Chief Business Development Officer <u>Tim@sonomatech.com</u> @TimSDye

> <u>www.SonomaTech.com</u> @sonoma_tech

